Abstract

We investigate a testing framework for type theory. We first describe the Krivine Abstract Machine (KAM), and the Testing KAM (TKAM) which is a modified version of the KAM that allows the testing of terms of the PCF language. This follows notes by Pierre Clairambault ([1]).

We use two versions of the TKAM. The first one is restricted to the Finite System T language and the second one has lazy natural numbers.

We then use the virtual machines as the central part of a testing procedure for the typing of terms.

This work is an implementation of certain aspects of the testing manual for intuitionistic type theory described in Peter Dybjer’s paper Program Testing and Constructive Validity [2].

Keywords: lazy instantiation / generation, transition function, testing the typing, implementation.
Acknowledgements

First of all I would like to thank Peter Dybjer for accepting me for this internship and for his help throughout the summer. It has been a very worthwhile experience which helped me confirm my interest in the field of type theory.

I would also like to thank all my other teachers at Chalmers for their interesting and valuable lessons which allowed me to really recognise the areas that are of the greatest interest for me.

I also wish to thank Pierre Hyvernat, my tutor for this project, for all his help and encouragement during my studies.

Thank you also to Laurence Vignollet for encouraging me to spend this year abroad, and for allowing me to choose a research internship rather than one in industry.

Finally I would like to thank all my teachers at the Université de Savoie for their help and support throughout my university career.
Contents

Introduction 5

1 Preliminaries 5
 1.1 Krivine Abstract Machine and λ-calculus 5
 1.2 Finite System T 6
 1.2.1 The Testing KAM restricted to Finite System T 6
 1.2.2 Atomic normal forms in Finite System T 7
 1.3 PCF 8
 1.3.1 The Lazy TKAM 8
 1.3.2 Atomic normal forms in PCF 9

2 Testing Judgements of Finite System T 9
 2.1 Using the TKAM to test judgements 9
 2.2 Implementation 11
 2.2.1 Data structures 11
 2.2.2 Transition function 12
 2.2.3 Atomic normal forms 14
 2.2.4 Testing function 15

3 Testing Judgements of PCF 16
 3.1 Using the LTKAM to test judgements 16
 3.2 Implementation 18
 3.2.1 Data structures 18
 3.2.2 Transition function 18
 3.2.3 Atomic normal forms 19
 3.2.4 Testing function 20

Conclusion and future work 20

References 21

A Literate Haskell doc. (F. System T) 22
 A.1 Finite System T 22
 A.2 State of the TKAM 23
 A.3 Transition function 24
 A.4 Atomic normal forms 26
 A.5 Testing 27
 A.6 Convenient functions for testing 28
 A.7 Examples 28

B Literate Haskell doc. (PCF) 30
 B.1 PCF 30
 B.2 State of the LTKAM 31
 B.3 Transition function 32
 B.4 Atomic normal forms 35
 B.5 Testing 36
 B.6 Convenient functions for testing 37
 B.7 Examples 38
Introduction

Program testing is one way of checking that a program meets its specifications. There exists a few frameworks that allow testing with automatic input generation such as QuickCheck [3] or SmallCheck [4] for the language Haskell.

These tools allow the testing of predicates over the application of generated input to a function. The input may be generated in different ways, QuickCheck uses random generation, and SmallCheck generates the input in a systematic way.

The same kind of tool have been investigated for dependent types by Qiao Haiyan [5]. It is shown that testing might be used as a tool during the construction of a proof.

What we mean by testing is quite different from what has been described in QuickCheck-like programs. Our approach has been presented as a testing manual for intuitionistic type theory by Peter Dybjer in [2]. It is about testing the following form of judgement,

\[\Gamma \vdash a : T \]

(the term \(a\) has type \(T\) in the context \(\Gamma\)) as opposed to the testing of a predicate

\[\Gamma \vdash P(a) \]

(the predicate \(P(a)\) is true in context \(\Gamma\)).

Content of the report. In the first section we present the Krivine Abstract Machine (KAM) together with one of its variations, the Testing KAM, described by Pierre Clairambault in [1]. We give two versions of the TKAM, the first one is restricted to the Finite System T language, and the second one is similar to the original TKAM (designed for PCF), but we extend it with lazy natural numbers.

The second section contains the definition of a testing framework for Finite System T, together with its implementation.

In the third section the testing framework and implementation are extended to the PCF language.

A full description of the implementations can be found in the appendix, in the form of a Literate Haskell documentation.

1 Preliminaries

1.1 Krivine Abstract Machine and \(\lambda\)-calculus

In this section we consider the very simple language of the \(\lambda\)-calculus. A term can be either a variable, a \(\lambda\)-expression or an application.

\[t ::= x \mid \lambda x.t \mid t \ t \]

An environment is a function \(\sigma\) that maps variables to closures, and closures are couples of a term and an environment.

The Krivine Abstract Machine (KAM) also contains a stack, which is simply a list of closures.

\[\pi ::= \pi_0 \mid (t, \sigma) \cdot \pi \]
The KAM’s state is a triple of a term, an environment and a stack. And the computation is defined in term of transitions. When there is no possible transition, the machine stops, and the state becomes the final state. The transition function → is defined by the following.

\[
\langle x, \pi, \sigma \rangle \rightarrow \langle \sigma_1(x), \pi, \sigma_2(x) \rangle \\
\langle \lambda x.t, \sigma, \pi, \sigma \rangle \rightarrow \langle t, \pi, \sigma + \{ x \mapsto \sigma_x \} \rangle \\
\langle t_1 t_2, \pi, \sigma \rangle \rightarrow \langle t_1, (t_2, \sigma), \pi, \sigma \rangle
\]

We will now try to run an example term using our definition of the KAM. We consider the term \((\lambda x.x) \ (\lambda x.x)\). The starting state of the machine is the following.

\[
\langle (\lambda x.x) \ (\lambda x.x), \pi_0, \emptyset \rangle
\]

The following is a full computation starting from this state.

\[
\langle (\lambda x.x) \ (\lambda x.x), \pi_0, \emptyset \rangle \\
\rightarrow \langle \lambda x.x, (\lambda x.x, \emptyset) \pi_0, \emptyset \rangle \\
\rightarrow \langle x, x, \pi_0, \{ x \mapsto (\lambda x.x, \emptyset) \} \rangle \\
\rightarrow \langle x, (x, \{ x \mapsto (\lambda x.x, \emptyset) \}), \pi_0, \{ x \mapsto (\lambda x.x, \emptyset) \} \rangle \\
\rightarrow \langle \lambda x.x, (x, \{ x \mapsto (\lambda x.x, \emptyset) \}), \pi_0, \emptyset \rangle \\
\rightarrow \langle x, \pi_0, \{ x \mapsto (\lambda x.x, \emptyset) \} \rangle \\
\rightarrow \langle \lambda x.x, \pi_0, \emptyset \rangle
\]

The term in the final state is the identity function \(\lambda x.x\), as it was to be expected.

1.2 Finite System T

We introduce a simple typed language based on the \(\lambda\)-calculus. The language has a single atomic type which is \(\text{Bool}\), and a function type.

\[
T ::= \text{Bool} \mid T \rightarrow T
\]

The terms of the language are the following, including the constants \(\text{true}\) and \(\text{false}\).

\[
t ::= x \mid \lambda x.t \mid t \ t \mid \text{T} \mid \text{F} \mid \text{case} \ t \ t \ t
\]

The typing rules are the usual ones.

1.2.1 The Testing KAM restricted to Finite System T

We need to extend the language with an additional term, namely channels. Channels do not belong to the language, they are metaterms. They play the role of metavariables, and will be eventually replaced by generated expressions during computation. A channel \(c\) always carry a type \(T\) and a context \(\Gamma\). We write \(c^T_\Gamma\).

The TKAM is a virtual machine, based on the KAM. Its state is a quadruple \(\langle t, \pi, \sigma, \tau \rangle\) where \(\langle t, \sigma \rangle\) is a closure, \(\pi\) is a stack of closures and \(\tau\) is a partial
function that maps channels to atomic normal forms (which will be defined in the next section). This environment allows the machine to keep track of the instantiation of channels, and keep the language pure. The empty stack is denoted \(\pi_0 \).

The transition function \(\Gamma \) for the TKAM is exhibited below. Note that it depends on a context \(\Gamma \).

\[
\langle x, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle \sigma_1(x), \pi, \sigma_2(x), \tau \rangle \\
\langle \lambda x. M, \pi_0, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle M, \pi_0, \sigma + \{x \mapsto \chi_\Gamma^{(\sigma)}(x)\}, \tau \rangle \\
\langle \lambda x. M, \sigma_N, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle M, \pi, \sigma + \{x \mapsto \sigma_N\}, \tau \rangle \\
\langle M N, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle M, \sigma_N, \pi, \sigma, \tau \rangle \\
\langle \text{case}_B M N T F, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle M, (N, \sigma).T.(N^F, \sigma^F).\pi, \sigma, \tau \rangle \\
\langle T, (N_T, \sigma_T).(N^F, \sigma^F).\pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle N_T, \pi, \sigma_T, \tau \rangle \\
\langle F, (N_T, \sigma_T).(N^F, \sigma^F).\pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle N^F, \pi, \sigma_F, \tau \rangle \\
\langle c, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle \tau(c), \pi, \sigma, \tau \rangle \\
\text{when } \langle c, \pi, \sigma, \tau \rangle \in \text{dom}(\tau) \\
\text{An atomic normal form } M \text{ of type } A \text{ in context } \Gamma \text{ is generated. Then the computation resumes with the following state.} \\
\langle M, \pi, \sigma, \tau + \{c^A_\Gamma \mapsto M\} \rangle \\
\text{Of course, there must be no collision between the names of the channels used in } M \text{ and the channels in } \text{dom}(\tau). \\

1.2.2 Atomic normal forms in Finite System T

An Atomic normal form always depends on a type \(T \) and a context \(\Gamma \), we denote it \(\text{anf}_\Gamma(T) \).

There are two cases. Either \(T \) has the canonical form \(\rightarrow A \rightarrow \text{Bool} \), and in that case we define

\[
\text{anf}_\Gamma(\rightarrow A \rightarrow \text{Bool}) = \{ \lambda x^A.M \mid M \in \text{anf}_\Gamma(A) \} \\
\text{or } T = \text{Bool}, \text{ and we define} \\
\text{anf}_\Gamma(\text{Bool}) = \{ T, F \} \cup \{ \text{case}_B (x^A) c_T c_F \mid x : \rightarrow A \rightarrow \text{Bool} \in \Gamma, \}
\]

\[
c_t, c_F \in C^{\text{Bool}}_T
\]

where \(C^{\text{Bool}}_T \) is the set of channels of type \(T \) in context \(\Gamma \).
1.3 PCF

PCF is a more expressive language, it is basically Finite System T extended with natural numbers and a fixed point combinator.

The types are now the following.

\[T ::= \text{Bool} \mid \text{Nat} \mid T \rightarrow T \]

And the terms are the following.

\[t ::= x \mid \lambda x.t \mid tt \mid Yt \mid F \mid \text{case}_B ttt \mid Z \mid S t \mid \text{case}_B ttt \]

Note that it is possible to define iszero, pred or natrec using the core language only.

\[
\begin{align*}
\text{iszero} & \overset{\text{def}}{=} \lambda t. \text{case}_N t \ (\lambda x. F) \\
\text{pred} & \overset{\text{def}}{=} \lambda t. \text{case}_N t \ (\lambda x. x) \\
\text{natrec} & \overset{\text{def}}{=} Y (\lambda rtgn. \text{case}_N nt \ (\lambda p.g p (r t g p)))
\end{align*}
\]

1.3.1 The Lazy TKAM

The TKAM that we present here is a little bit different from the original version defined by Pierre Clairambault in [1]. However the aim of the Lazy TKAM is still to computes open expressions of the PCF language by introducing metavariables in the expression (called channels). And when a value is needed for a channel, a so-called atomic normal form is generated.

We need to extend the language with channels \((c \Gamma)\) in the same way as in the previous section. Once again, channels are metaterms. They are introduced during computation and replaced by special terms called atomic normal forms.

Much like the TKAM, the Lazy TKAM’s state is a quadruple \(\langle t, \pi, \sigma, \tau \rangle\) where \((t, \sigma)\) is a closure, \(\pi\) is a stack of closures and \(\tau\) is a partial function that maps channels to atomic normal forms.

The transition function of the machine is defined as follow.

\[
\begin{align*}
\langle x, \pi, \sigma, \tau \rangle & \xrightarrow{c} \langle \sigma_1(x), \pi, \sigma_2(x), \tau \rangle \\
\langle \lambda x.M, \pi_0, \sigma, \tau \rangle & \xrightarrow{\Gamma} \langle M, \pi_0, \sigma + \{x \mapsto (c_1^{(x)}, \sigma)\}, \tau \rangle \\
\langle \lambda x.M, \sigma_N, \pi, \sigma, \tau \rangle & \xrightarrow{\Gamma} \langle M, \pi, \sigma + \{x \mapsto \sigma_N\}, \tau \rangle \\
\langle M N, \pi, \sigma, \tau \rangle & \xrightarrow{\Gamma} \langle M, (\pi, (\sigma)\pi, \sigma, \tau) \\
\langle Y M, \pi, \sigma, \tau \rangle & \xrightarrow{\Gamma} \langle M, (\lambda M, \sigma)\pi, \sigma, \tau \rangle \\
\langle \text{case}_b M N_F N_T, \pi, \sigma, \tau \rangle & \xrightarrow{\Gamma} \langle M, (N_T, \sigma).((N_F, \sigma)\pi, \sigma, \tau) \\
\langle T, (N_T, \sigma_T).((N_F, \sigma_F)\pi, \sigma, \tau) \rangle & \xrightarrow{\Gamma} \langle N_T, \pi, \sigma_T, \tau \rangle \\
\langle F, (N_T, \sigma_T).((N_F, \sigma_F)\pi, \sigma, \tau) \rangle & \xrightarrow{\Gamma} \langle N_F, \pi, \sigma_F, \tau \rangle \\
\langle \text{case}_b M N_S N_Z, \pi, \sigma, \tau \rangle & \xrightarrow{\Gamma} \langle M, (N_Z, \sigma).((N_S, \sigma)\pi, \sigma, \tau) \\
\langle Z, (N_Z, \sigma_Z).((N_S, \sigma_S)\pi, \sigma, \tau) \rangle & \xrightarrow{\Gamma} \langle N_Z, \pi, \sigma_Z, \tau \rangle \\
\langle S M, (N_Z, \sigma_Z).((N_S, \sigma_S)\pi, \sigma, \tau) \rangle & \xrightarrow{\Gamma} \langle N_M, \pi, \sigma_S, \tau \rangle \\
\langle c, \pi, \sigma, \tau \rangle & c \in \text{dom}(\tau) \xrightarrow{\Gamma} \langle \tau(c), \pi, \sigma, \tau \rangle
\end{align*}
\]
As for the TKAM in the previous section, when a state of the following form is reached, there is a need for a channel instantiation.

\[\langle c^A, \pi, \sigma, \tau \rangle \quad c \notin \text{dom}(\tau) \]

An atomic normal form \(M \) of type \(A \) in context \(\Gamma \) is generated. Then the computation resumes with the following state.

\[\langle M, \pi, \sigma, \tau + \{c^A \mapsto M\} \rangle \]

1.3.2 Atomic normal forms in PCF

The definition of an atomic normal form of type \(T \) in context \(\Gamma \) for PCF is split into three cases.

First, when \(T \) has the canonical form \(\overrightarrow{A} \to G \) where \(G \in \{\text{Nat}, \text{Bool}\} \) we define

\[\text{anf}_\Gamma(\overrightarrow{A} \to G) = \{\lambda \overrightarrow{x}.M \mid M \in \text{anf}_{\overrightarrow{x} : A} \} \]

When \(T = \text{Bool} \) we have the following.

\[\text{anf}_\Gamma(\text{Bool}) = \{T, F\} \cup \{\text{case}_{\overrightarrow{x}}(x \overrightarrow{c}) de \mid x : \overrightarrow{A} \to \text{Bool} \in \Gamma, \]
\[c_i \in C^A_i, \quad d, e \in C^\text{Bool}_\Gamma \}
\]

When \(T = \text{Nat} \) we have the following.

\[\text{anf}_\Gamma(\text{Nat}) = \{Z\} \cup \{s c \mid c \in C^\text{Nat}_\Gamma \]
\[\cup \{\text{case}_{\overrightarrow{x}}(x \overrightarrow{c}) de \mid x : \overrightarrow{A} \to \text{Nat} \in \Gamma, \]
\[c_i \in C^A_i, \quad d \in C^\text{Nat}_\Gamma, \quad e \in C^{\text{Nat} \to \text{Nat}}_\Gamma \}
\]

\[\cup \{\text{case}_{\overrightarrow{x}}(x \overrightarrow{c}) de \mid x : \overrightarrow{A} \to \text{Bool} \in \Gamma, \]
\[c_i \in C^A_i, \quad d \in C^\text{Nat}_\Gamma, \quad e \in C^{\text{Nat} \to \text{Nat}}_\Gamma \}
\]

2 Testing Judgements of Finite System \(T \)

We have not done any testing so far. We only gave a definition of the TKAM, together with atomic normal forms of a given type, in a given context.

We are now going to present what it mean to test a judgement in Finite System \(T \), but first we need to change a little bit the TKAM, so that we can use it as the central part of our testing framework. We will then show an implementation of the testing manual.

2.1 Using the TKAM to test judgements

The TKAM is going to be used for testing judgements of the following form.

\[\Gamma \vdash a : T \]
Remark that testing the following judgements is equivalent.

\[\Gamma \vdash f : T_1 \rightarrow T_2 \quad \Gamma, x : T_1 \vdash f \, x : T_2 \]

Hence it is easy to reduce any judgement to one of the following form.

\[\Gamma \vdash a : \text{Bool} \]

We now need to make some changes to the transition function of the TKAM. In particular, we will need it to yield different kinds of states, that we call

- • continuation states,
- • value states,
- • error states
- • and instantiation states.

First we give the transition rules that lead to a continuation state. This mean that their result can be used as a starting point for a new transition.

\[\langle \text{case}_b \, M \, N_T \, N_F, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle M, (N_T, \sigma). (N_F, \sigma) \rangle \]

\[\langle T, (N_T, \sigma_T). (N_F, \sigma_F) \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle N_T, \pi, \sigma_T, \tau \rangle \]

\[\langle F, (N_T, \sigma_T). (N_F, \sigma_F) \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle N_F, \pi, \sigma_T, \tau \rangle \]

\[\langle M \, N, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle M, (N, \sigma) \rangle \]

\[\langle \lambda x. M, \sigma_N, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle M, \pi, \sigma + \{x \mapsto \sigma_N\}, \tau \rangle \]

\[\langle x, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle \sigma_1(x), \pi, \sigma_2(x), \tau \rangle \]

\[\langle x, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle \{c^{\Gamma}(x), \pi, \sigma + \{x \mapsto c_N^{\Gamma}(x)\}, \tau \rangle \]

\[\langle c, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \langle \tau(c), \pi, \sigma, \tau \rangle \]

The second group of transition rules is the group of rules giving value states as output. The value states are in one sense the end of the computation.

\[\langle T, \pi_0, \sigma, \tau \rangle \xrightarrow{\Gamma} \text{value } T \]

\[\langle F, \pi_0, \sigma, \tau \rangle \xrightarrow{\Gamma} \text{value } F \]

\[\langle \lambda x. M, \pi_0, \sigma, \tau \rangle \xrightarrow{\Gamma} \text{value } \lambda x. M \]

The third group is the group of transitions yielding an error state. This simply mean that such transition leads to failure.

\[\langle T, (N, \sigma_N) \pi_0, \sigma, \tau \rangle \xrightarrow{\Gamma} \text{error} \]

\[\langle F, (N, \sigma_N) \pi_0, \sigma, \tau \rangle \xrightarrow{\Gamma} \text{error} \]

The last group contains only one transition rule which leads to a state that expresses the need for the instantiation of a channel. This is an instantiation state.

\[\langle c, \pi, \sigma, \tau \rangle \xrightarrow{\Gamma} \text{need instantiation} \]
Now to test the following judgement

\[\Gamma \vdash M : \text{Bool} \]

we run the TKAM on \(M \), which mean fully evaluating the following state.

\[\langle M, \pi_0, \emptyset, \emptyset \rangle \]

Remark that what we mean by fully evaluating is to take a transition steps until the state is not a continuation state.

If the result state is an error state, then the test fails. If the result state is a value state that is \(T \) or \(F \) then the test succeeds. If it is a value state that is a \(\lambda \)-abstraction then the test fails (the result has a function type, it cannot be a boolean).

If on the other hand the result state contains an instantiation request, then we instantiate the channel with an atomic normal form. We then run the TKAM again on this state, act according to the result, and so on.

Note that there is no guarantee for the computation to stop, in which case we cannot conclude on the issue of the test.

2.2 Implementation

In this section we show the correspondance between the mathematical description and the implementation of the TKAM. We first present the data structures that are going to be used, then the transition function, the implementation of the atomic normal forms and finally the testing functions

2.2.1 Data structures

The TKAM can be modeled easily by using algebraic data types. First we define the data type Term which will be used to represent a term of the Finite System \(T \) language.

```haskell
data Term = Var VName
  | Abs VName Term
  | App Term Term
  | T
  | F
  | CaseB Term Term Term
  | Channel CName Type Context
```

Note that VName and CName are defined to be type synonyms of String. This allows us to distinguish name of variables and name of channels.

Channels need to carry a type and a context, which are defined as follow.

```haskell
data Type = Bool
  | Fun Type Type
newtype Context = Context [(VName, Type)]
```

Now that we have terms, we need to represent the central part of the virtual machine, namely the state. We define the type State as follow.

```haskell
newtype State = State (Term, Stack, VEnv, CEnv, Int)
```
In order to have defined the state completely, we need to define the type `Stack`, which is a stack of closures, represented as a list. `VEnv` maps variable names to closures and `CEnv` maps channel names to terms. Finally, a `Closure` is a couple `(Term, VEnv)`.

```
newtype Stack = Stack [ Closure ]
newtype VEnv = VEnv [( VName, Closure )]
newtype CEnv = CEnv [( CName, Term )]
newType Closure = Closure ( Term, VEnv )
```

Note that the `Int` in the type `State` is used to have fresh names for channels and variables. It could be possible to add an `Int` in the definition of `VEnv` and `CEnv`, but this is a design choice. Yet another possibility would be not to carry any `Int`, list all names used in a state and find one that is not used.

2.2.2 Transition function

The TKAM being defined by its transition function Γ, we need to define a function to represent it. This function will take as input a state s of the machine and return a state t such that $s \leadsto t$. We will also need the output value to include information about the kind of the output state. The function `step` has the following type signature.

```
step :: Context --> State --> Either State ( Kind , State )
```

In the return type we use the `Either` data type to distinguish between continuation states and the other kinds of states on which the transition must stop or pause. We define the type `Kind` as follow.

```
data Kind = Error
          | Inst
          | Value
```

Before defining the `step` function, we can define easily the `steps` function, which will take transition steps until it reach a state that is not a continuation state.

```
steps :: Context --> State --> ( Kind , State )
steps c m = case step c m of
  Left m' --> steps c m'
  Right r -> r
```

The definition of `step` consists of a pattern-matching on the input state, according to the definition of the transition function. First we give the rules related to conditional operator `caseB` and the boolean constants.

```
step _ ( MState ( CaseB c t e , Stack s , lv , env , i ) ) =
  let ct = Closure ( t , lv )
  cf = Closure ( e , lv )
  in Left $ MState ( c , Stack ( ct:cf:s ) , lv , env , i )

step _ ( MState ( T , Stack ( Closure ct : s ) , lv , env , i ) ) =
  Left $ MState ( fst ct , Stack s , snd ct , env , i )

step _ ( MState ( F , Stack ( Closure cf : s ) , lv , env , i ) ) =
  Left $ MState ( fst cf , Stack s , snd cf , env , i )
```

12
Note that if the term is a boolean constant, the stack must have at least two elements for the computation to continue. If it has only one element this leads to an error, and if the stack is empty, the result is a value state.

Now we give the definition for function application and \(\lambda \)-abstraction.

Note that for a \(\lambda \)-abstraction, if the stack is empty, the result is a value state, otherwise the computation can go on.

The definition for variables is a bit trickier. If the variable is mapped to a closure in the environment, then the computation continues with this closure. Otherwise, we map the variable to a fresh channel (it has not yet been instantiated).

The two last rules are about channels. The first one is for checking if the channel has already been instantiated, and the second one is to signal the need for an instantiation.

We have now a function that allows us to run the \(\text{TKAM} \), but we still cannot instantiate channels. To do so we need \textit{atomic normal forms}.

```
step \( \cdot \) st@ (MState (T, Stack [], s, env, i)) = Right (Value, st)
step \( \cdot \) st@ (MState (F, Stack [], s, env, i)) = Right (Value, st)
step \( \cdot \) st@ (MState (T, Stack ([], s, env, i)) = Right (Error, st)
step \( \cdot \) st@ (MState (F, Stack ([], s, env, i)) = Right (Error, st)

Note that if the term is a boolean constant, the stack must have at least two elements for the computation to continue. If it has only one element this leads to an error, and if the stack is empty, the result is a value state.

Now we give the definition for function application and \( \lambda \)-abstraction.

Note that for a \( \lambda \)-abstraction, if the stack is empty, the result is a value state, otherwise the computation can go on.

The definition for variables is a bit trickier. If the variable is mapped to a closure in the environment, then the computation continues with this closure. Otherwise, we map the variable to a fresh channel (it has not yet been instantiated).

The two last rules are about channels. The first one is for checking if the channel has already been instantiated, and the second one is to signal the need for an instantiation.

We have now a function that allows us to run the \( \text{TKAM} \), but we still cannot instantiate channels. To do so we need \textit{atomic normal forms}. 

```

2.2.3 Atomic normal forms

To compute the set of atomic normal forms of a certain type in a certain context we need a function with the following signature.

\[
\text{atomicNFs} :: \text{Type} \rightarrow \text{Context} \rightarrow \text{Int} \rightarrow [(\text{Int}, \text{Term})]
\]

Note that once again, the parameter of type \text{Int} and the first field of the couples in the return list are to keep track of fresh names for channels and variables.

We pattern-match on the type in the definition. When the type is a function taking an element of type \(t\) and returning an element of type \(t'\), we take a fresh variable \(v\) and compute the ANFs of type \(t'\) in the previous context extended with \(v : t\). Finally we enclose these ANFs in an abstraction over \(v\) to obtain the desired result.

\[
\text{atomicNFs} (\text{Fun } t t') (\text{Context } c) \ i =
\begin{align*}
\text{let } & \text{var } = "\text{var}\" ++ \text{show } i \\
\text{anfs } = & \text{atomicNFs } t' (\text{Context } ((\text{var}, t):c)) (i+1) \\
\text{in map } & (i, \text{Abs } \text{var } \text{e}) \ \text{anfs}
\end{align*}
\]

The ANFs of boolean type are the basic cases true and false together with more complex cases handled by the auxiliary function adaptVarType. For each variable in the context, this function builds an ANF based on application of arguments to the variables and case expressions. This function will be given later.

\[
\text{atomicNFs } \text{Bool } \text{ctx@} (\text{Context } c) \ i =
\begin{align*}
\text{let } & \text{rest } = \text{map } (\text{adaptVarType } \text{ctx } \text{Bool } \ i) \ c \\
\text{in (i,T): (i,F):rest}
\end{align*}
\]

We now describe the auxiliary function adaptVarType, required for the definition of the previous function.

\[
\text{adaptVarType} :: \text{Context} \rightarrow \text{Type} \rightarrow \text{Int} \rightarrow (\text{VName}, \text{Type}) \rightarrow (\text{Int}, \text{Term})
\]

\[
\text{adaptVarType } \text{ctx } t \text{c } i \ (v, tv) =
\begin{align*}
\text{let } & \text{ts } = \text{components } tv \\
\text{-- ts : types to apply to } v \text{ to get a ground type} \\
\text{cn } = & [("ch" ++ \text{show } n | n <- [i..(i + \text{length } ts - 1)])] \\
\text{ch } = & \text{zipWith } (\\lambda t \rightarrow \text{Channel } n t \ \text{ctx}) \ \text{cn } ts \\
\text{-- ch : channels to apply to } v \\
\text{t } = & \text{foldl } \text{App } (\text{Var } v) \ \text{ch} \\
\text{-- t : application of the channels to } v \\
\text{i' } = & i + \text{length } ts \\
\text{ch1 } = "\text{ch}" ++ \text{show } i' \\
\text{ch2 } = "\text{ch}" ++ \text{show } (i'+1) \\
\text{term } = & \text{CaseB } t (\text{Channel } ch1 \ \text{tc } ctx) (\text{Channel } ch2 \ \text{tc } ctx) \\
\text{in (i' + 2, term)}
\end{align*}
\]

Once we have got all the atomic normal forms of type \(A\) in context \(\Gamma\), it is easy to generate one. To do so, we give the following function.

\[
\text{atomicNF} :: \text{StdGen} \rightarrow \text{Type} \rightarrow \text{Context} \rightarrow \text{Int} \rightarrow (\text{StdGen}, \text{Term}, \text{Int})
\]

\[
\text{atomicNF } g \ t \ c \ i = \text{oneOf } g \$ \text{atomicNFs } t \ c \ i
\]

14
Note that the `oneOf` function pick at random an element of a list. It has the following signature.

\[
\text{oneOf} :: \text{StdGen} \to [a] \to (\text{StdGen}, a)
\]

The type `StdGen` is a random seed that allow the `oneOf` function to be defined.

In order to have all the elements required for testing, we need one more function for instantiating a channel in a state.

\[
\text{instantiateChannel} :: \text{StdGen} \to \text{MState} \\
\to (\text{StdGen}, \text{MState}) \\
\to \text{New random seed and state}
\]

\[
\text{instantiateChannel} \ g \ (\text{MState} \ (\text{Channel} \ nt \ c, s, lv, \text{CEnv} env, i)) = \\
\begin{array}{l}
\text{let} \ (g', (i', anf)) = \text{atomicNF} \ g \ t \ c \ i \\
env' = \text{CEnv} ((n, anf) : env) \\
in (g', \text{MState} \ (anf, s, lv, env', i'))
\end{array}
\]

2.2.4 Testing function

We now give the core testing function. It has the following signature.

\[
\text{test} :: \text{StdGen} \to \text{Context} \to \text{Term} \to \text{Type} \to \text{Int} \to \text{Int} \to (\text{StdGen}, \text{Bool})
\]

To test a function taking a type `t` and returning a type `t'`, we test the function applied to a fresh variable `v` to have type `t'` in the context extended with `v : t`.

\[
\text{test} \ g \ (\text{Context} \ c) \ e \ (\text{Fun} \ t \ t') \ i = \\
\begin{array}{l}
\text{let} \ v = 'vart' ++ \text{show} \ i \\
\ c' = (v, t); c \\
\ e' = \text{App} \ e \ (\text{Var} v) \\
in \text{test} \ g \ (\text{Context} \ c') \ e' \ t' \ (i+1)
\end{array}
\]

If the type tested is the boolean type, then we wrap the term in an empty state, and start looping. In the loop, we run the TKAM using the steps function, and pattern-match on the kind of the output state. If the output state is an error, then the test fails, we return False. If the result is a value that is T or F then the test is a success, we return True. The only other kind of value is an abstraction, and this leads to a failure. In the case of a need for instantiation, we instantiate the channel and loop.

\[
\text{test} \ g \ c \ e \ \text{Bool} \ i = \begin{array}{l}
\text{let} \ st = \text{MState} \ (e, \text{Stack} [] , \text{VEnv} [], \text{CEnv} [], 0) \\
in \text{loop} \ g \ st \ c \\
\end{array}
\]

\[
\text{loop} :: \text{StdGen} \to \text{MState} \to \text{Context} \to (\text{StdGen}, \text{Bool})
\]

\[
\text{loop} \ g \ st \ c = \\
\begin{array}{l}
\text{let} \ (k, st') = \text{steps} \ c \ st \\
in \text{case} \ k \ \text{of} \\
\text{Error} \to (g, \text{False}) \\
\text{Value} \to \text{case} \ \text{term} \ st' \ \text{of} \\
T \to (g, \text{True}) \\
F \to (g, \text{True}) \\
_ \to (g, \text{False}) -- \text{Abstraction} \\
\text{Inst} \to \text{let} \ (g', st'') = \text{instantiateChannel} \ g \ st' \\
in \text{loop} \ g' \ st'' \ c
\end{array}
\]
3 Testing Judgements of PCF

Testing with PCF is very similar to testing with Finite System T, only a little bit more complex.

Very much like we did in the previous section, we will need to do change the transition function of the Lazy TKAM so that it can be used for testing judgements.

We will also extend our implementation with the new features needed for testing in the PCF language.

3.1 Using the LTKAM to test judgements

The remark that we made about testing judgements of Finite System T still holds for PCF, the following judgements are equivalent.

\[\Gamma \vdash f : T_1 \rightarrow T_2 \quad \Gamma, x : T_1 \vdash f \ x : T_2 \]

Any judgement can be reduced to one of the following forms.

\[\Gamma \vdash a : \text{Nat} \quad \Gamma \vdash a : \text{Bool} \]

We use the same system as for the transition of the TKAM to classify the transition rules in four categories.

The transition rules that lead to a continuation states are the following. Four of them are new.

\[
\begin{align*}
\langle \text{case}_b \ M \ N_1 \ N_2, \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (M, (N_1, \sigma), (N_2, \sigma), \pi, \sigma, \tau) \\
\langle T, (N_1, \sigma), (N_2, \sigma), \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (N_1, \pi, \sigma, \tau) \\
\langle F, (N_1, \sigma), (N_2, \sigma), \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (N_2, \pi, \sigma, \tau) \\
\langle M \ N, \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (M, (N, \sigma), \pi, \sigma, \tau) \\
\langle \lambda x. M, \sigma_1, \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (M, \pi, \sigma + \{x \mapsto \sigma_1\}, \tau) \\
\langle x, \pi, \sigma, \tau \rangle \ x \in \text{dom}(\sigma) & \overset{\Gamma}{\mapsto} (\sigma_1(x), \pi, \sigma_2(x), \tau) \\
\langle x, \pi, \sigma, \tau \rangle \ x \notin \text{dom}(\sigma) & \overset{\Gamma}{\mapsto} (\epsilon_T^{\Gamma(x)}, \pi, \sigma + \{x \mapsto \epsilon_T^{\Gamma(x)}\}, \tau) \\
\langle c, \pi, \sigma, \tau \rangle \ c \in \text{dom}(\tau) & \overset{\Gamma}{\mapsto} \tau(c), \pi, \sigma, \tau) \\
\langle Y M, \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (M, (Y M, \sigma), \pi, \sigma, \tau) \\
\langle \text{case}_b \ M \ N_1 \ N_2, \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (M, (N_1, \sigma), (N_2, \sigma), \pi, \sigma, \tau) \\
\langle Z, (N_1, \sigma), (N_2, \sigma), \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (N_1, \pi, \sigma, \tau) \\
\langle S M, (N_1, \sigma), (N_2, \sigma), \pi, \sigma, \tau \rangle & \overset{\Gamma}{\mapsto} (N_2, M, \pi, \sigma, \tau)
\end{align*}
\]

The transition rules leading to value states are the following. There are two
new rules in this group (natural number values).

\(\langle T, \pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{value } T\)

\(\langle F, \pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{value } F\)

\(\langle \lambda x. M, \pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{value } \lambda x. M\)

\(\langle S M, \pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{value } S M\)

\(\langle Z, \pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{value } Z\)

The group of transition rules leading to error states has two new members.

\(\langle T, (N, \sigma_N).\pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{error}\)

\(\langle F, (N, \sigma_N).\pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{error}\)

\(\langle Z, (N, \sigma_N).\pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{error}\)

\(\langle S M, (N, \sigma_N).\pi_0, \sigma, \tau \rangle \xrightarrow{\text{Γ}} \text{error}\)

The last group of rules remains the same. There is only a single rule that lead to an instantiation state.

\(\langle c, \pi, \sigma, \tau \rangle \ x \notin \text{dom}(\tau) \xrightarrow{\text{Γ}} \text{need instantiation}\)

The difference with the testing framework for Finite System T is mainly the adding of a new testing procedure for natural numbers. The testing procedure for judgements with the type Bool is only slightly modified.

To test judgements of the form

\[\Gamma \vdash a : \text{Bool}\]

we proceed as in the previous section. However, when it comes to value states there are two more cases (for natural numbers). And obviously, in these two cases, the test must fail. Everything else remains the same.

Now for testing judgements of the form

\[\Gamma \vdash a : \text{Nat}\]

we run the TKAM on a, or in other words fully evaluate the following state.

\(\langle a, \pi_0, \emptyset, \emptyset \rangle\)

If the result state is an error state, then the test fails. If the result state is a value state that is T, F or a λ-abstraction then the test fails. If it is a value state that is a Z then the test succeeds, and if it is S M then we remove the S and resume the computation on M.

Note that S M has type Nat only if M has type Nat. That’s why the computation needs to continue.

If the result state contains an instantiation request, then we instantiate the channel with an atomic normal form, run the Lazy TKAM on the new state and continue until the test fails or succeeds (or continue forever, in which case we cannot conclude).
3.2 Implementation

In this section we extend the previous implementation with the features specific to the Lazy TKAM, and extend the testing procedures.

3.2.1 Data structures

There are only two changes in the data structures used in the testing framework. The types Type and Term must be extended with the additional constructs of PCF and become the following.

```haskell
data Term = Var VName
         | Abs VName Term
         | App Term Term
         | Y Term
         | T
         | F
         | CaseB Term Term Term
         | Z
         | S Term
         | CaseN Term Term Term
         | Channel CName Type Context

data Type = Bool
         | Nat
         | Fun Type Type
```

3.2.2 Transition function

We also need to add a few rules to the transition function. We need one rule for the fixed-point recursion operator. The term is added to the stack, and the computation resumes with the term inside the Y constructor.

```haskell
step c (MState (Y t, Stack s, lv, env, n)) =
  let s' = Closure (Y t, lv):s
  in Left $ MState (t, Stack s', lv, env, n)
```

We also need rules for the case construct over natural numbers, zero and the successor. Note that these rules are very similar to the rules for the boolean case construct.

```haskell
step (MState (CaseN m z s, Stack st, lv, env, n)) =
  let cz = Closure (z,lv)
      cs = Closure (s,lv)
  in Left $ MState (m, Stack (cz:cs:st), lv, env, n)
```

The zero and successor case are almost the same as the true and false case. The only difference is that in the successor case, the element inside the successor construct must be applied to the corresponding element on the stack.

```haskell
step (MState (Z, Stack [ ], lv, env, i)) =
  Left $ MState (fst cz, Stack s, snd cz, env, i)
step (MState (S t, Stack (:. Closure cs:s), lv, env, i)) =
  Left $ MState (App (fst cs) t, Stack s, snd cs, env, i)
```

If the stack is empty, then we have a value state.

```haskell
step st@ (MState (Z, Stack []), _, _, _, _, _) = Right (Value, st)
step st@ (MState (S t, Stack []), _, _, _, _, _) = Right (Value, st)
```
And if it has only one element then this is an error.

```
step st@(MState (Z, Stack (\[]):\[, .., \]), Stack (\[]):\[, .., \))) = Right (Error, st)
step st@(MState (S t, Stack (\[]):\[, .., \)), Stack (\[]):\[, .., \))) = Right (Error, st)
```

Every other rule remain the same.

3.2.3 Atomic normal forms

Now we need to change the function for computing the list of the atomic normal forms completely. However it still has the same signature, and the case for the function type remains the same too.

```
atomicNFs : : Type  -- Type of the ANF
   -> Context  -- Context
   -> \[(Int,Term)\]  -- Next index for a fresh name
atomicNFs (Fun t t') (Context c) i =
   let var = "var" ++ show i
       anfs = atomicNFs t' (Context ((var, t) : c) (i+1))
in map (\(i, e) -> (i, Abs var e)) anfs
```

The ANFs of boolean type are the basic cases true and false together with more complex cases handled by the auxiliary function adaptVarType. For each variable in the context, this function build an ANF based on application of arguments to the variables and case expressions. This function will be given latter.

```
atomicNFs Bool ctx@(Context c) i =
   let rest = map (adaptVarType ctx Bool i) c
in (i, T) : (i, F) : rest
```

The ANFs of natural number type are defined in a very similar way, only the base case are different. They are zero and the successor of a channel of type natural number type in the same context.

```
atomicNFs Nat ctx@(Context c) i =
   let rest = map (adaptVarType ctx Nat i) c
sch = S (Channel ("ch" ++ show i) Nat ctx)
in (i, Z) : (i+1, sch) : rest
```

We now describe the auxiliary function adaptVarType, required for the definition of the previous function.

```
adaptVarType : : Context -> Type -> Int -> (VName, Type)
   -> (Int, Term)
adaptVarType ctx tc i (v, tv) =
   let ts = components tv
       -- ts : types to apply to v to get a ground type
       cn = [ "ch" ++ show n | n <- [i..(i + length ts - 1)] ]
       ch = zipWith (\n t -> Channel n t ctx) cn ts
       -- ch : channels to apply to v
       t = foldl App (Var v) ch
       -- t : application of the channels to v
       i' = i + length ts
       ch1 = "ch" ++ show i'
       ch2 = "ch" ++ show (i'+1)
term = case baseType tv of -- Pattern-match on the type of t
   Bool -> CaseB t (Channel ch1 tc ctx)
             (Channel ch2 tc ctx)
```

19
3.2.4 Testing function

The core testing function has one more case in its definition. The natural number case is very similar. The only different part is in the handling of values. Z leads to success, and when we get $S\ t$ as a value we must continue looping on the state with the S removed. In other cases the test is a failure.

```
let test g c e Nat = let st = MState (e, Stack [], VEnv [], CEnv [], 0)
    in loop g st c

where loop :: StdGen -> MState -> Context -> (StdGen, Bool)
    loop g st c = let (k, st') = steps c st
    in case k of
        Error -> (g, False)
        Value -> case term st' of
            Z   -> (g, True)
            S\ t -> loop g (remS st') c
            _   -> (g, False) --- Bool or lambda
        Inst -> let (g', st'') = instantiateChannel g st'
                in loop g' st'' c
```

Not that the function remS is defined as follow. It only removes the successor which is in the term in the state.

```
remS :: MState -> MState
remS (MState (S \s\ t, a, b, c, d)) = MState (t, a, b, c, d)
```

Conclusion and future work

We presented an implementation of a testing framework based on some aspects of the recent work of Peter Dybjer ([2]). We started from the TKAM designed by Pierre Clairambault ([1]), and adapted it for the testing of judgements.

This new kind of testing gives other perspectives for the development of proof assistants since it can be used to debug proofs.

This report was first intended to contain a part about testing judgements of dependent type theory, but adapting the TKAM for dependent types was harder than we expected and would have required more time. Peter Dybjer and Pierre Clairambault met recently and succeeded to adapt the TKAM to dependent types, and we will work on its implementation soon.
References

Appendix A: Literate Haskell doc. (F. System T)

This module contains an implementation of the TKAM adapted for testing judgements of the form

\[\Gamma \vdash a : T \]

where \(a \) is a term of the Finite System T language.

First we give a name to the module and import a few things from the standard library.

```haskell
module TestFSYSTEMT where
import Data.Maybe (fromJust)
import System.Random (StdGen, next, newStdGen)
```

Appendix A.1: Finite System T

We define what a term of the language is. We use an algebraic datatype.

```haskell
type VName = String
type CName = String
data Term = Var VName         -- Variable
          | Abs VName Term    -- Lambda-abstraction
          | App Term Term     -- Application
          | CaseB Term Term Term -- Boolean condition
          | T                  -- True
          | F                  -- False
          | Channel CName Type Context -- Channel
```

Note that channels carry a type and a context.

In order for the channels to be defined completely we need to have types and contexts.

```haskell
data Type = Bool
          | Fun Type Type
deriving (Eq)
```

```haskell
newtype Context = Context [(VName, Type)]
```

As it might be convenient for debugging, we define instances of Show for a term, a type and a context.

```haskell
instance Show Term where
  show (Var v) = v
  show (Abs v e) = "" ++ v ++ "." ++ show e
  show (App t1 t2) = "(" ++ show t1 ++ ")" ++ show t2 ++ ")"
  show (CaseB b t e) = "caseB(" ++ show b ++ ")"++ show t ++ "")" ++ show e ++ "")"
  show T = "tt"
  show F = "ff"
  show (Channel n t c) = "[" ++ n ++ "]:"++ show t ++ "]:" ++ show c ++ "|
```

```haskell
instance Show Type where
  show Bool = "B"
  show (Fun s@(Fun _ _) t) = "(" ++ show s ++ ")->" ++ show t
```
instance Show Context where
 show (Context c) = case c of
 [] -> "" ++ showMapT [] ++ ""
 where
 showMapT :: [(VName, Type)] -> String
 showMapT [] = ""
 showMapT [(n, t)] = n ++ ":" ++ show t
 showMapT ((n, t):cs) = n ++ ":" ++ show t ++ "," ++ showMapT cs

Appendix A.2: State of the TKAM

We now define what the state of the TKAM is.

newtype MState = MState (Term, Stack, VEnv, CEnv, Int)

As it is to be expected, the state contains a term, a stack, a variable environment and a channel environment. We also add an integer to the definition, this will be useful to get fresh variable names.

To have the definition in full we need to define what are a stack, a variable environment and a channel environment.

newtype Stack = Stack [Closure]
newtype Closure = Closure (Term, VEnv)
newtype VEnv = VEnv [(VName, Closure)]
newtype CEnv = CEnv [(CName, Term)]

As we did before, we define instances of Show for the state of the machine. This might be useful for debugging.

instance Show MState where
 show (MState (t, s, lv, env, _)) =
 "(" ++ show t ++ " \n
 where
 showMapT [] = ""
 showMapT [(n, t)] = n ++ "=" ++ show t
 showMapT ((n, t):ls) = n ++ "=" ++ show t ++ "," ++ showMapT ls

instance Show Stack where
 show (Stack s) = case s of
 [] -> ""
 c:cs -> show c ++ "," ++ show cs

instance Show Closure where
 show (Closure (t, lv)) = "(" ++ show t ++ "\n
instance Show VEnv where
 show (VEnv []) = ""
 show (VEnv ls) = "(" ++ showMapV ls ++ ")"

 where
 showMapV :: [(VName, Closure)] -> String
 showMapV [] = ""
 showMapV [(n, c)] = n ++ "=" ++ show c
 showMapV ((n, c):ls) = n ++ "=" ++ show c ++ "," ++ showMapV ls

23
instance Show CEnv where
 show (CEnv []) = ""
 show (CEnv ls) = "{" ++ showMapE ls ++ "}" where
 showMapE :: [(CName, Term)] -> String
 showMapE [] = ""
 showMapE [(n, t)] = n ++ "=" ++ show t
 showMapE [(n, t):ls] = n ++ "=" ++ show t ++ " , " ++ showMapE ls

Appendix A.3: Transition function

We will now define the transition function, according to the modifications we did to the LTKAM for testing. We need some kind of flags to tell what kind of state the machine is in after a transition.

data Kind = Error -- There was an error
 | Inst -- Need for a channel instantiation
 | Value -- Value state
deriving (Show)

The signature of the transition function will be the following.

step :: Context -> MState -> Either MState (Kind, MState)

We use the Either datatype in the return type in order to distinguish between the continuation states and the final states (error, instantiation and value state).

We first give the rule for boolean condition. The computation continues with the condition term, and the two other terms are added to the top of the stack.

step (MState (CaseB c t e, Stack s, lv, env, i)) =
 let ct = Closure (t, lv)
 cf = Closure (e, lv)
 in Left $ MState (c, Stack (ct:cf:s), lv, env, i)

Then the rules for true and false can only be applied if there are at least two closures on the stack.

step (MState (T, Stack (Closure ct,:s), lv, env, i)) =
 Left $ MState (fst ct, Stack s, snd ct, env, i)

step (MState (F, Stack (:Closure cf:s), lv, env, i)) =
 Left $ MState (fst cf, Stack s, snd cf, env, i)

If there is no closure on the stack, the this is a value.

step (MState (T, Stack [], lv, env, i)) = Right (Value, st)

step (MState (F, Stack [], lv, env, i)) = Right (Value, st)

And if there is just one, then this is an error.

step (MState (T, Stack (:)[], lv, env, i)) = Right (Error, st)

step (MState (F, Stack (:)[]), lv, env, i)) = Right (Error, st)

Now the rule for application only take the argument term to the top of the stack and computation continue with the function.

step (MState (App f a, Stack s, lv, env, i)) =
 let cl = Closure (a, lv)
 in Left $ MState (f, Stack (cl:s), lv, env, i)
In the case of a lambda-abstraction, if the stack is not empty, the variable in the lambda is mapped to the top of the stack in the variable environment, and the computation keeps going with the body.

$$\text{step} \ (\text{MState} \ (\text{Abs} \ v \ e, \ \text{Stack} \ (\text{cl:s}), \ \text{VEnv} \ lv, \ \text{env}, \ i)) = \left\{ \begin{array}{ll} \text{Left} & \$ \ \text{MState} \ (e, \ \text{Stack} \ s, \ \text{VEnv} \ ((v, \text{cl}):(lv)), \ \text{env}, \ i) \end{array} \right.$$

If the stack is empty however, then the state is a value.

$$\text{step} \ (\text{MState} \ (\text{Abs} \ v \ e, \ \text{Stack} \ [], \ \text{env}, \ i)) = \text{Right} \ (\text{Value}, \ \text{st})$$

For variables, if the variable is mapped to something in the variable environment, the computation resumes with this closure.

$$\text{step} \ (\text{MState} \ (\text{Var} \ v, \ s, \ \text{VEnv} \ lv, \ \text{env}, \ i)) = \left\{ \begin{array}{ll} \text{Left} & \left\{ \begin{array}{ll} \text{Closure} \ cl = \text{fromJust} \ \$ \ \text{lookup} \ v \ lv \ & \text{safe since} \ v \ \text{is in} \ lv \\
\text{let} \ & \text{isIn} \ v \ lv = \left\{ \begin{array}{ll} \text{Nothing} & \to \ False \\
\text{Just} \ tv & \to \ True \end{array} \right. \\
\text{where} \ & \text{isIn} :: \text{VName} \to [(\text{VName}, \ \text{Closure})] \to \text{Bool} \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{cl} \ \text{cl} \ \text{env}, \ i) \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{ch} \ \text{st} \ \text{env}, \ i) \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{ch} \ \text{st} \ \text{env}, \ i) \\
\end{array} \right. \\
\right. \\
\text{let} \ & \text{isIn} \ v \ lv = \text{case} \ \text{lookup} \ v \ lv \ \text{of} \\
\text{Nothing} & \to \ False \\
\text{Just} & \to \ True \end{array} \right. \right.$$

However, if the variable is not mapped to something, then we map it to a new channel of the right type in the context and continue the computation with this channel. If the context does not contain the variable then it is not exhaustive, this leads to an error.

$$\text{step} \ (\text{MState} \ (\text{Var} \ v, \ s, \ \text{VEnv} \ lv, \ \text{env}, \ i)) = \left\{ \begin{array}{ll} \text{Left} & \left\{ \begin{array}{ll} \text{let} \ \text{inEnv} = \text{map} \ \text{filter} \ ((n, _)) \to \text{not} \ \text{elem} \ \text{inEnv}) \ \text{c} \) \\
\text{let} \ & \text{chl} \ = \text{Closure} \ (\text{ch}, \ \text{VEnv} \ lv) \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{ch} \ \text{st} \ \text{env}, \ i) \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{ch} \ \text{st} \ \text{env}, \ i) \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{ch} \ \text{st} \ \text{env}, \ i) \\
\end{array} \right. \\
\right. \\
\text{let} \ & \text{isIn} \ c \ cl = \text{case} \ \text{lookup} \ c \ cl \ \text{of} \\
\text{Nothing} & \to \ False \\
\text{Just} & \to \ True \end{array} \right. \right.$$

There is an alternative possibility, which is an optimization. In this case we restrict the environment to the variables that are in scope.

$$\text{step} \ (\text{MState} \ (\text{Var} \ v, \ s, \ \text{VEnv} \ lv, \ \text{env}, \ i)) = \left\{ \begin{array}{ll} \text{Left} & \left\{ \begin{array}{ll} \text{let} \ \text{inEnv} = \text{map} \ \text{filter} \ ((n, _)) \to \text{not} \ \text{elem} \ \text{inEnv}) \ \text{c} \) \\
\text{let} \ & \text{chl} \ = \text{Closure} \ (\text{ch}, \ \text{VEnv} \ lv) \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{ch} \ \text{st} \ \text{env}, \ i) \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{ch} \ \text{st} \ \text{env}, \ i) \\
\text{in} \ & \text{Left} \ \$ \ \text{MState} \ (\text{ch} \ \text{st} \ \text{env}, \ i) \\
\end{array} \right. \\
\right. \\
\text{let} \ & \text{isIn} \ c \ cl = \text{case} \ \text{lookup} \ c \ cl \ \text{of} \\
\text{Nothing} & \to \ False \\
\text{Just} & \to \ True \end{array} \right. \right.$$
If the channel has not been instantiated yet, then it must be.

\[
\text{step} _{\text{st}} \oplus (\text{MState} \{ \text{Channel} \ c \ldots, c\}) = \quad \text{c not in env}
\]

We have now a full definition of the transition function. We can define a new function that makes a full transition. Its definition is straight-forward.

\[
\text{steps} :: \text{Context} \rightarrow \text{MState} \rightarrow (\text{Kind}, \text{MState})
\]

\[
\text{steps} \ c \ m = \text{case step} \ c \ m \ of
\]

\[
\begin{aligned}
\text{Left} \ m' & \rightarrow \text{steps} \ c \ m' \\
\text{Right} \ r & \rightarrow \ r
\end{aligned}
\]

Appendix A.4: Atomic normal forms

All the ANFs of a certain type in a certain context will be computed by a function with the following signature.

\[
\text{atomicNFs} :: \text{Type} \rightarrow \text{Context} \rightarrow \text{Int} \rightarrow \text{[(Int,Term)]}
\]

Note that the third parameter (which is an integer) is used to obtain fresh variable names and channel names. And similarly, in the return type, terms are coupled with integers to give the next fresh integer if this term is selected.

We pattern-match on the type in the definition. When the type is a function taking an element of type t and returning an element of type t', we take a fresh variable v and compute the ANFs of type t' in the previous context extended with v : t. Finally we enclose these ANFs in an abstraction over v to obtain the desired result.

\[
\text{atomicNFs} \ (\text{Fun} \ t \ t') \ (\text{Context} \ c) \ i = \\
\quad \text{let} \ \text{var} = "\text{var}" ++ \text{show} \ i \\
\quad \ \text{anfs} = \text{atomicNFs} \ t' \ (\text{Context} \ ((\text{var}, \text{t}) : c)) \ (i+1) \\
\quad \ \text{in} \ \text{map} \ (\lambda (i, e) \rightarrow (i, \text{Abs} \ \text{var} \ e)) \ \text{anfs}
\]

The ANFs of boolean type are the basic cases true and false together with more complex cases handled by the auxiliary function adaptVarType. For each variable in the context, this function build an ANF based on application of arguments to the variables and case expressions. This function will be given latter.

\[
\text{atomicNFs} \ \text{Bool} \ \text{ctx}@ (\text{Context} \ c) \ i = \\
\quad \text{let} \ \text{rest} = \text{map} \ (\text{adaptVarType} \ \text{ctx} \ \text{Bool} \ i) \ c \\
\quad \ \text{in} \ (i, \text{T}):(i, \text{F}):\text{rest}
\]

We now describe the auxiliary function adaptVarType, required for the definition of the previous function.

\[
\text{adaptVarType} :: \text{Context} \rightarrow \text{Type} \rightarrow \text{Int} \rightarrow (\text{VName}, \text{Type}) \\
\rightarrow (\text{Int}, \text{Term})
\]

\[
\text{adaptVarType} \ \text{ctx} \ \text{tc} \ i \ (v, tv) = \\
\quad \text{let} \ \text{ts} = \text{components} \ tv \\
\quad \quad \quad \quad \quad \text{ts} : \text{types to apply to v to get a ground type} \\
\quad \quad \quad \quad \quad \text{cn} = ["ch" \leftrightarrow \text{show} \ n \ | \ n \leftarrow [1..(i + \text{length} \ \text{ts} - 1)]] \\
\quad \quad \quad \quad \quad \text{ch} = \text{zipWith} \ (\lambda \ n \ t \rightarrow \text{Channel} \ n \ t \ \text{ctx}) \ \text{cn} \ \text{ts} \\
\quad \quad \quad \quad \quad \text{ch} : \text{channels to apply to v}
\]

26
\[t = \text{fold1 \ App (Var v) ch} \]
\[\text{--- t : application of the channels to v} \]
\[i' = i + \text{length ts} \]
\[\text{ch1 = "ch" ++ show i'} \]
\[\text{ch2 = "ch" ++ show (i'+1)} \]
\[\text{term = CaseB t (Channel ch1 tc ctx) (Channel ch2 tc ctx)} \]
\[\text{in (i' + 2, term)} \]

where components :: Type \rightarrow \text{[Type]}
components (Fun ta tb) = ta : components tb
components _ = []

Now that we can compute all the ANFs of a certain type in a certain context, we need a function to pick one at random.

\[\text{atomicNF :: StdGen \rightarrow Random seed} \]
\[\rightarrow \text{Type \rightarrow Type of the ANF} \]
\[\rightarrow \text{Context \rightarrow Context} \]
\[\rightarrow \text{Int \rightarrow Next index for a fresh name} \]
\[\rightarrow \text{(StdGen, (Int, Term)) \rightarrow New seed, fresh int, term} \]
\[\text{atomicNF g t c i = oneOf g $ atomicNFs t c i} \]

where oneOf :: StdGen \rightarrow [a] \rightarrow (StdGen, a)
\[\text{oneOf g l} = \text{let sz = length l} \]
\[(i', g') = \text{next g} \]
\[i' = i \text{mod' sz} \]
\[i'' = \text{if } i' < 0 \text{ then } i' + sz \text{ else } i' \]
\[\text{in (g', l !! i'')} \]

We also give a function that instantiate a channel in a machine state. This function can only be used if the term in the state is a channel.

\[\text{instantiateChannel :: StdGen \rightarrow MState \rightarrow New random seed and state} \]
\[\rightarrow \text{(StdGen, MState) \rightarrow New random seed and state} \]
\[\text{instantiateChannel g (MState (Channel n t c, s, lv, CEnv env, i))} = \]
\[\text{let (g'', (i'', anf)) = atomicNF g t c i} \]
\[\text{env' = CEnv ((n, anf) : env)} \]
\[\text{in (g'', MState (anf, s, lv, env', i''))} \]

Appendix A.5: Testing

We now give the core testing function. It has the following signature.

\[\text{test :: StdGen \rightarrow Context \rightarrow Term \rightarrow Type \rightarrow Random seed} \]
\[\rightarrow \text{Int \rightarrow Int for fresh variable names} \]
\[\rightarrow \text{(StdGen, Bool) \rightarrow New random seed and result} \]

To test a function taking a type \(t \) and returning a type \(t' \), we test the function applied to a fresh variable \(v \) to have type \(t' \) in the context extended with \(v : t \).

\[\text{test g (Context c) e (Fun t t')} i = \]
\[\text{let v = "vart" ++ show i} \]
\[c' = (v, t):c \]
\[e' = \text{App e (Var v)} \]
\[\text{in test g (Context c') e' t' (i+1)} \]

If the type tested is the boolean type, then we wrap the term in an empty state, and start looping. In the loop, we run the TKAM using the steps function, and pattern-match on the kind of the output state. If the output state is an error, then the test fails, we return False. If the result is a value that is T or F then the
test is a success, we return True. The only other kind of value is an abstraction, and this leads to a failure. In the case of a need for instantiation, we instantiate the channel and loop.

```haskell
test g c e Bool = let st = MState (e, Stack [], VEnv [], CEnv [], 0)
    in loop g st c
where loop :: StdGen -> MState -> Context -> (StdGen, Bool)
loop g st c =
    let (k, st') = steps c st
    in case k of
        Error -> (g, False)
        Value -> case term st' of
            T -> (g, True)
            F -> (g, True)
        _ -> (g, False) -- Abstraction
        Inst -> let (g',st'') = instantiateChannel g st'
                    in loop g'' st'' c
```

In the previous function we have used an auxiliary functions that helped us get the term inside a state.

```haskell
term :: MState -> Term
term (MState (t, _ , _ , _)) = t
```

Appendix A.6: Convenient functions for testing

We give a function that sequence a given number of tests. It takes as parameter the number of tests to perform, and returns the number of successful tests before failure.

```haskell
runTests :: StdGen -> Int -> Context -> Term -> Type -> Int
runTests g 0 c e t = 0
runTests g nb c e t = let (g',r) = test g c e t 0
    in if r then 1 + runTests g' (nb-1) c e t
        else 0
```

We also give a function that is more convenient for testing. It is wrapped in the IO monad to get access to a random seed from the environment.

```haskell
quickTest :: Int -> Context -> Term -> Type -> IO ()
quickTest nb c e t = do
    g <- newStdGen
    let r = runTests g nb c e t
    if r == nb
        then putStrLn $ "All the" ++ show nb ++ " tests passed!"
        else putStrLn $ "Test number" ++ show (r+1) ++ " failed..."
```

Appendix A.7: Examples

We test a first term which corresponds to a test that appears in Pierre Clairambault’s notes.
The term is the following. It is a function that take as input a function, it then applies T to the function, and if the result it T then it returns the function applied to F, and otherwise T.

\[t_1 = \text{Abs } f (\text{CaseB } (\text{App } f T) (\text{App } f F) T) \]

The context is the following.

\[c_1 = \text{Context } [f : \text{Fun Bool Bool}] \]

And the term is expected to have the followin type in the context.

\[t_1 : \text{Fun (Fun Bool Bool) Bool} \]

Finally we run a test.

\[\text{run1 = quickTest 1000 c1 t1 t1} \]
Appendix B: Literate Haskell doc. (PCF)

This module contains an implementation of the TKAM extended with lazy natural numbers and adapted for testing. It can be used to test judgements of the form

$$\Gamma \vdash a : T$$

where a is a term of the PCF language.

First we give a name to the module and import a few things from the standard library.

```haskell
module TestPCF where
import Data.Maybe ( fromJust )
import System.Random ( StdGen , next , newStdGen )
```

Appendix B.1: PCF

We define what a term of the language is. We use an algebraic datatype.

```haskell
type VName = String
type CName = String
data Term = Var VName           -- Variable
          | Abs VName Term     -- Lambda-abstraction
          | App Term Term      -- Application
          | Y Term             -- Fixed point recursion
          | CaseB Term Term Term -- Boolean condition
          | T                  -- True
          | F                  -- False
          | CaseN Term Term Term -- Natural condition
          | Z                  -- Zero
          | S Term             -- Successor
          | Channel CName Type Context -- Channel
```

Note that channels carry a type and a context.

In order for the channels to be defined completely we need to have types and contexts.

```haskell
data Type = Bool
          | Nat
          | Fun Type Type
deriving ( Eq )
```

```haskell
newtype Context = Context [ (VName, Type) ]
```

As it might be convenient for debugging, we define instances of Show for a term, a type and a context.

```haskell
instance Show Term where
show (Var v) = v
show (Abs v e) = "\n" ++ v ++ " \n" ++ show e
show (App t1 t2) = "(\n" ++ show t1 ++ "\n") \n" ++ show t2 ++ "\n")"
show (Y t) = "Y\n" ++ show t ++ "\n")"
show (CaseB b t e) = "caseB\n" ++ show b ++ "\n")\n" ++ show t ++ "\n")\n" ++ show e ++ "\n")"
show T = "tt"
show F = "ff"
```
show (CaseN n z s) = "caseN\{" ++ show n ++ ")\{" ++ show z ++ ")\{" ++ show s ++ "\}" show Z = "Z" show (S t) = "S\{" ++ show t ++ "\}" show (Channel n t c) = "[" ++ n ++ ":\{" ++ show t ++ ",\}" ++ show c ++ "\}]" instance Show Type where show Bool = "B" show Nat = "N" show (Fun s@(Fun _ _) t) = "(\{" ++ show s ++ ")\{" ++ show t show (Fun s t) = show s ++ ")\{" ++ show t instance Show Context where show (Context c) = case c of [] -> "\{\}" ++ showMapT [] ++ "\}" where showMapT :: [(VName, Type)] -> String showMapT [] = "\" showMapT [(n, t)] = n ++ ":\{" ++ show t ++ ",\}" ++ showMapT showMapT ((n, t):cs) = n ++ ":\{" ++ show t ++ ",\}" ++ showMapT cs

Appendix B.2: State of the LTKAM

We now define what the state of the LTKAM is.

newtype MState = MState (Term, Stack, VEnv, CEnv, Int)

As it is to be expected, the state contains a term, a stack, a variable environment and a channel environment. We also add an integer to the definition, this will be useful to get fresh variable names.

To have the definition in full we need to define what are a stack, a variable environment and a channel environment.

newtype Stack = Stack [Closure]
newtype Closure = Closure (Term, VEnv)
newtype VEnv = VEnv [(VName, Closure)]
newtype CEnv = CEnv [(CName, Term)]

As we did before, we define instances of Show for the state of the machine. This might be useful for debugging.

instance Show MState where show (MState (t, s, lv, env, _)) = "]\}" ++ show t ++ ",\" ++ show s ++ ",\" ++ show lv ++ "\" ++ show env ++ "\"
instance Show Stack where show (Stack s) = case s of [] -> "\" c:cs -> show c ++ "\" ++ show cs
instance Show Closure where
show (Closure (t, lv)) = "(" ++ show t ++ ":" ++ show lv ++ ")"

instance Show VEnv where
 show (VEnv []) = ""
 show (VEnv ls) = "(" ++ showMapV ls ++ ")"
 where showMapV :: [(VName, Closure)] -> String
 showMapV [] = ""
 showMapV [(n,c)] = n ++ ":=" ++ show c
 showMapV ((n,c):ls) = n ++ ":=" ++ show c ++ "", "+" ++ showMapV ls

instance Show CEnv where
 show (CEnv []) = ""
 show (CEnv ls) = "{
 ++ showMapE ls
 }"
 where showMapE :: [(CName, Term)] -> String
 showMapE [] = ""
 showMapE [(n,t)] = n ++ ":=" ++ show t
 showMapE ((n,t):ls) = n ++ ":=" ++ show t ++ "", "+" ++ showMapE ls

Appendix B.3: Transition function

We will now define the transition function, according to the modifications we did to the LTKAM for testing. We need some kind of flags to tell what kind of state the machine is in after a transition.

data Kind = Error -- There was an error
 | Inst -- Need for a channel instantiation
 | Value -- Value state
deriving (Show)

The signature of the transition function will be the following.

step :: Context -> MState -> Either MState (Kind, MState)

We use the Either datatype in the return type in order to distinguish between the continuation states and the final states (error, instantiation and value state).

We first give the rule for boolean condition. The computation continues with the condition term, and the two other terms are added to the top of the stack.

step (MState (CaseB c t e, Stack s, lv, env, i)) =
 let ct = Closure (t, lv)
 cf = Closure (e, lv)
 in Left $ MState (c, Stack (ct:cf:s), lv, env, i)

Then the rules for true and false can only be applied if there are at least two closures on the stack.

step (MState (T, Stack (Closure ct:s), _, env, i)) =
 Left $ MState (fat ct, Stack s, snd ct, env, i)
step (MState (F, Stack (Closure cf:s), _, env, i)) =
 Left $ MState (fat cf, Stack s, snd cf, env, i)

If there is no closure on the stack, the this is a value.

step (MState (T, Stack []), _, _, _) = Right (Value, st)
step (MState (F, Stack []), _, _, _) = Right (Value, st)

And if there is just one, then this is an error.

32
We now switch to the case construct over natural numbers. This is a very similar case.

\[
\text{step } s t (\text{MState (T, Stack (\text{[}[]), _ , _ , _))) = Right (Error, st)}
\]

\[
\text{step } s t (\text{MState (F, Stack (\text{[}[]), _ , _ , _))) = Right (Error, st)}
\]

The zero and successor case are almost the same as the true and false case. The only difference is that in the successor case, the element inside the successor construct must be applied to the corresponding element on the stack.

\[
\text{step } s t (\text{MState (CaseN m z s, Stack st, lv, env, n)}) =
\]

\[
\begin{align*}
\text{let } & cz = \text{Closure (z,lv)} \\
\text{cs} & = \text{Closure (s,lv)}
\end{align*}
\]

\[
in \text{Left } \$ \text{MState (m, Stack (cz:cs:st), lv, env, n)}
\]

If the stack is empty, then we have a value state.

\[
\text{step } s t (\text{MState (Z, Stack (\text{[}[]), _ , _ , _))) = Right (Value, st)}
\]

\[
\text{step } s t (\text{MState (S t, Stack (\text{[}[]), _ , _ , _))) = Right (Value, st)}
\]

And if it has only one element then this is an error.

\[
\text{step } s t (\text{MState (Z, Stack (\text{[}[]), _ , _ , _))) = Right (Error, st)}
\]

\[
\text{step } s t (\text{MState (S t, Stack (\text{[}[]), _ , _ , _))) = Right (Error, st)}
\]

Now the rule for application only take the argument term to the top of the stack and computation continue with the function.

\[
\text{step } s t (\text{MState (App f a, Stack s, lv, env, i)}) =
\]

\[
\begin{align*}
\text{let } & cl = \text{Closure (a,lv)}
\end{align*}
\]

\[
in \text{Left } \$ \text{MState (f, Stack (cl:s), lv, env, i)}
\]

In the case of a lambda-abstraction, if the stack is not empty, the the variable in the lambda is mapped to the top of the stack in the variable environment, and the computation keeps going with the body.

\[
\text{step } s t (\text{MState (Abs v e, Stack (\text{[}[]), _ , _ , _))) = Right (Value, st)}
\]

If the stack is empty however, then the state is a value.

\[
\text{step } s t (\text{MState (Abs v e, Stack (\text{[}[]), _ , _ , _))) = Right (Value, st)}
\]

In the case of the Y combinator, the term is added to the stack, and the computation resumes with the term inside the Y constructor.

\[
\text{step } c (\text{MState (Y t, Stack s, lv, env, n)}) =
\]

\[
\begin{align*}
\text{let } & s' = \text{Closure (Y t, lv):s}
\end{align*}
\]

\[
in \text{Left } \$ \text{MState (t, Stack s', lv, env, n)}
\]

For variables, if the variable is mapped to something in the variable environment, the the computation resumes with this closure.
However, if the variable is not mapped to something, then we map it to a new channel of the right type in the context and continue the computation with this channel. If the context does not contain the variable then it is not exhaustive, this leads to an error.

There is an alternative possibility, which is an optimization. In this case we restrict the environment to the variables that are in scope.

The latter version seems to always terminate, and the first one seems to diverge, even if it might just be that it is taking a very long time. Sometimes it terminates as expected in about 10 seconds.

If there is a channel on top of the stack, then if it has been instantiated already, we replace it with the corresponding term in the channel environment (we have to do that to keep the language pure).

If the channel has not been instantiated yet, then it must be.

We have now a full definition of the transition function. We can define a new function that makes a full transition. Its definition is straightforward.

```haskell
step :: Context -> MState -> (Kind, MState)
steps c m | c not in env = Right (Inst, st)
steps c m = case step c m of
  Left m' -> steps c m'
  Right r -> r
```
Appendix B.4: Atomic normal forms

All the ANFs of a certain type in a certain context will be computed by a function with the following signature.

<table>
<thead>
<tr>
<th>signature</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomicNFs : : Type \rightarrow Context \rightarrow Int \rightarrow [(Int,Term)]</td>
<td>Type of the ANF</td>
</tr>
<tr>
<td></td>
<td>Context</td>
</tr>
<tr>
<td></td>
<td>Next index for a fresh name</td>
</tr>
<tr>
<td></td>
<td>Returns couples next fresh name / term</td>
</tr>
</tbody>
</table>

Note that the third parameter (which is an integer) is used to obtain fresh variable names and channel names. And similarly, in the return type, terms are coupled with integers to give the next fresh integer if this term is selected.

We pattern-match on the type in the definition. When the type is a function taking an element of type t and returning an element of type t’, we take a fresh variable v and compute the ANFs of type t’ in the previous context extended with v : t. Finally we enclose these ANFs in an abstraction over v to obtain the desired result.

```
atomicNFs (Fun t t') (Context c) i =
    let var = "var" ++ show i
    anfs = atomicNFs t' (Context ((var,t):c)) (i+1)
    in map (
        (i,e) -> (i,Abs var e)
    ) anfs
```

The ANFs of boolean type are the basic cases true and false together with more complex cases handled by the auxiliary function adaptVarType. For each variable in the context, this function build an ANF based on application of arguments to the variables and case expressions. This function will be given latter.

```
atomicNFs Bool ctx@(Context c) i =
    let rest = map (adaptVarType ctx Bool i) c
    in (i,T):(i,F):rest
```

The ANFs of natural number type are defined in a very similar way, only the base case are different. They are zero and the successor of a channel of type natural number type in the same context.

```
atomicNFs Nat ctx@(Context c) i =
    let rest = map (adaptVarType ctx Nat i) c
    sch = S (Channel ("ch" ++ show i) Nat ctx)
    in (i,Z):(i+1,sch):rest
```

We now describe the auxiliary function adaptVarType, required for the definition of the previous function.

```
adaptVarType : : Context -> Type -> Int -> (VName,Type)
     -> (Int,Term)
adaptVarType ctx tc i (v,tv) =
    let ts = components tv
    -- ts : types to apply to tv to get a ground type
    cn = [ "ch" ++ show n | n <- [i..(i + length ts - 1)] ]
    ch = zipWith (\n        n t -> Channel n t ctx)
            cn ts
    -- ch : channels to apply to tv
    t = foldl App (Var v) ch
    -- t : application of the channels to v
    i' = i + length ts
    ch1 = "ch" ++ show i'
    ch2 = "ch" ++ show (i'+1)
```

35
term = case baseType tv of -- Pattern-match on the type of t
 Bool -> CaseB t (Channel ch1 tc ctx)
 (Channel ch2 tc ctx)
 Nat -> CaseN t (Channel ch1 tc ctx)
 (Channel ch2 (Fun Nat tc) ctx)
 in (i' + 2, term)

where components :: Type -> [Type]
components (Fun ta tb) = ta : components tb
components _ = []
baseType :: Type -> Type
baseType (Fun t) = baseType t
baseType t = t

Now that we can compute all the ANFs of a certain type in a certain context, we need a function to pick one at random.

atomicNF :: StdGen -- Random seed
 -> Type -- Type of the ANF
 -> Context -- Context
 -> Int -- Next index for a fresh name
 -> (StdGen, (Int, Term)) -- New seed, fresh name, term
atomicNF g t c i = oneOf g $ atomicNFs t c i

where oneOf :: StdGen -- [a]
 -> (StdGen, a)
oneOf g l = let sz = length l
 (i, g') = next g
 i' = i 'mod' sz
 i'' = if i' < 0 then i' + sz else i'
in (g', l !! i'')

We also give a function that instantiate a channel in a machine state. This function can only be used if the term in the state is a channel.

instantiateChannel :: StdGen -- Random seed
 -> MState -- State
 -> (StdGen, MState) -- New random and state
instantiateChannel g (MState (Channel n t c, s, lv, CEnv env, i)) =
 let (g', (i', anf)) = atomicNF g t c i
 env' = CEnv ((n, anf) : env)
in (g', MState (anf, s, lv, env', i'))

Appendix B.5: Testing
We now give the core testing function. It has the following signature.

test :: StdGen -- Random seed
 -> Context -> Term -> Type -- Context
 -> Int -- Int for fresh variable names
 -> (StdGen, Bool) -- New random seed and result

test g (Context c) e (Fun t t') i =
 let v = "var" ++ show i
 c' = (v, t):c
 e' = App e (Var v)
in test g (Context c') e' t' (i+1)

If the type tested is the boolean type, then we wrap the term in an empty state, and start looping. In the loop, we run the TKAM using the steps function,
and pattern-match on the kind of the output state. If the output state is an error, then the test fails, we return False. If the result is a value that is T or F then the test is a success, we return True. Other kind of values are functions and natural numbers. This is a failure. In the case of a need for instantiation, we instantiate the channel and loop.

```
test g c e Bool = let st = MState (e, Stack [], VEnv [], CEnv [], 0)
in loop g st c
where loop :: StdGen -> MState -> Context -> (StdGen, Bool)
loop g st c =
  let (k, st') = steps c st
  in case k of
    Error -> (g, False)
    Value -> case term st' of
      T -> (g, True)
      F -> (g, True)
    Inst -> let (g', st'') = instantiateChannel g st'
      in loop g' st'' c
```

Finally, the natural number case is very similar. The only different part is in the handling of values. Z leads to success, and when we get $S\, t$ as a value we must continue looping on the state with the S removed. In other cases the test is a failure.

```
test g c e Nat = let st = MState (e, Stack [], VEnv [], CEnv [], 0)
in loop g st c
where loop :: StdGen -> MState -> Context -> (StdGen, Bool)
loop g st c =
  let (k, st') = steps c st
  in case k of
    Error -> (g, False)
    Value -> case term st' of
      Z -> (g, True)
      S t -> loop g (remS st') c
    Inst -> let (g', st'') = instantiateChannel g st'
in loop g' st'' c
```

In the previous function we have used some auxiliary functions that helped us get the term inside a state or remove the S on the term of a state.

```
term :: MState -> Term
  term (MState (t, a, b, c, d)) = t
remS :: MState -> MState
  remS (MState (S t, a, b, c, d)) = MState (t, a, b, c, d)
```

Appendix B.6: Convenient functions for testing

We give a function that sequence a given number of tests. It takes as parameter the number of tests to perform, and returns the number of successful tests before failure.

```
runTests :: StdGen -> Int -> Context -> Term -> Type
```

37
runTests \, g \, 0 \, c \, e \, t = 0 \\
runTests \, g \, n b \, c \, e \, t = \text{let} \, (g' , r) = \text{test} \, g \, c \, e \, t \, 0 \\
\hspace{2cm} \text{in} \, \text{if} \, r \, \text{then} \, 1 \, + \, \text{runTests} \, g' \, (n b -1) \, c \, e \, t \\
\hspace{5cm} \text{else} \, 0

We also give a function that is more convenient for testing. It is wrapped in
the IO monad to get access to a random seed from the environment.

\text{quickTest} :\!\!\!: \, \text{Int} \rightarrow \text{Context} \rightarrow \text{Term} \rightarrow \text{Type} \rightarrow \text{Judgement} \\
\hspace{2cm} \text{IO} ()

\begin{align*}
\text{quickTest} \, n b \, c \, e \, t &= \text{do} \\
&\hspace{2cm} g <\!\!< \, \text{newStdGen} \\
&\hspace{4cm} \text{let} \, r = \text{runTests} \, g \, n b \, c \, e \, t \\
&\hspace{4cm} \text{if} \, r \, == \, n b \\
&\hspace{6cm} \text{putStrLn} \, \$ \, \"All the _ _ tests _ _ passed!\" \\
&\hspace{4cm} \text{else} \, \text{putStrLn} \, \$ \, \"Test number _ _ failed . . . \" \\
\end{align*}

Appendix B.7: Examples

We gave everything that is needed for testing, and now we are going to make
some tests. But before we give some convenient functions that allow some
shortcuts during the creation of a term.

toNat :\!\!\!: \, \text{Int} \rightarrow \text{Term} \\
toNat \, n \mid n < 0 = \text{error} \, "\text{No negative integers . . .}" \\
toNat \, 0 = Z \\
toNat \, n = S \, (\text{toNat} \, (n -1))

\begin{align*}
\text{fromNat} :\!\!\!: \, \text{Term} \rightarrow \text{Int} \\
\text{fromNat} \, Z \rightarrow 0 \\
\text{fromNat} \, (S \, t) &= 1 + \text{fromNat} \, t \\
\text{fromNat} _ &= \text{error} \, "\text{Not a natural number . . .}"
\end{align*}

We test a first term which corresponds to a function taking as input a
natural number and returning true if it is zero and false otherwise (this is an
implementation of the isZ function).

\begin{align*}
t_1 &= \text{Abs} \, \"n\" \, (\text{CaseN} \, (\text{Var} \, \"n\") \, T \, (\text{Abs} \, \"x\" \, F))
\end{align*}

We test this term in the following context.

\begin{align*}
c_1 &= \text{Context} \mid (\"n\", \, \text{Nat}) , (\"x\", \, \text{Nat})
\end{align*}

The type we want to test is the following.

\begin{align*}
ty_1 &= \text{Fun} \, \text{Nat} \, \text{Bool}
\end{align*}

We can do a test run as follow.

\begin{align*}
\text{run1} &= \text{quickTest} \, 1000 \, c_1 \, t_1 \, ty_1
\end{align*}

Here is another test example. The term corresponds to a function taking a
function \(f \) as input and returning true if \(f \, 0 \) is equal to 0 and false otherwise.

\begin{align*}
t_2 &= \text{Abs} \, \"f\" \, (\text{CaseN} \, (\text{App} \, (\text{Var} \, \"f\") \, Z) \, T \, (\text{Abs} \, \"x\" \, F)) \\
c_2 &= \text{Context} \mid (\"f\", \, \text{Fun} \, \text{Nat} \, \text{Nat}) , (\"x\", \, \text{Nat})
\end{align*}

\begin{align*}
ty_2 &= \text{Fun} \, (\text{Fun} \, \text{Nat} \, \text{Nat}) \, \text{Bool}
\end{align*}

\begin{align*}
\text{run2} &= \text{quickTest} \, 1000 \, c_2 \, t_2 \, ty_2
\end{align*}
The last test is the one that appears in Pierre Clairambault’s notes.

\[
t_3 = \text{Abs } f \text{ (CaseB (App (Var } f \text{) T) (App (Var } f \text{) F) T)}
\]
\[
c_3 = \text{Context } \left[\left(f, \text{Fun Bool Bool} \right) \right]
\]
\[
ty_3 = \text{Fun (Fun Bool Bool) Bool}
\]
\[
\text{run}_3 = \text{quickTest 1000 } c_3 \ t_3 \ ty_3
\]
Appendix C: Résumé et mots clés

Dans ce rapport nous étudions une nouvelle notion de test pour la théorie des types. Nous commençons par décrire la Krivine Abstract Machine (KAM) qui est une machine virtuelle permettant d’évaluer des termes du λ-calcul. Nous présentons ensuite la Testing KAM qui est une version modifiée de la KAM que Pierre Clairambault a décrite dans des notes ([1]).

Nous utilisons ensuite deux versions de la TKAM, la première restreinte au language Finite System T et la seconde dérivée de la version originale laquelle nous ajoutons des entiers naturels lazy.

Les machines virtuelles sont ensuite utilisées comme la partie centrale d’une procedure de test pour le typage de termes.

Ce travail est une implémentation de certains aspects d’un manuel de test présenté par Peter Dybjer dans son papier Program Testing and Constructive Validity [2].

Mots clés: instantiation / generation paresseuse, fonction de transition, test de typage, implémentation.