A Practical Framework for Curry-Style Languages
(Inspired by realizability semantics)

Rodolphe Lepigre
Context: using realizability for programming languages

Last year’s talk was about the PML language:

- A simple but powerful mechanism for program certification
- It is embedded in a (fairly standard) ML-style language
- Everything is backed by a (classical) realizability semantics
- Property: $v \in \phi^{\perp \perp} \Rightarrow v \in \phi$ for all ϕ closed under (\equiv)

Today’s talk is about making Curry-style quantifiers practical:

- They are essential for PML (polymorphism, dependent types)
- But pose a practical issue due to non-syntax-directed rules
- Restricting quantifiers (prenex polymorphism) is not an option
- **Contribution**: a solution with subtyping inspired by semantics

In this talk we will stick to System F for simplicity
Quick reminder: Church-style versus Curry-style

Church-style System F:

\[
\Gamma, x : A \vdash x : A
\]

\[
\Gamma \vdash \lambda x : A . t : A \rightarrow B
\]

\[
\Gamma \vdash t : A \rightarrow B \quad \Gamma \vdash u : A
\]

\[
\Gamma \vdash t u : B
\]

\[
\Gamma \vdash t : A \quad X \notin \Gamma
\]

\[
\Gamma \vdash \land X. t : \land X. A
\]

\[
\Gamma \vdash \forall X. A
\]

\[
\Gamma \vdash t \ B : A[X := B]
\]

Curry-style System F is obtained by removing the highlighted parts
A natural idea: using subtyping

We define a relation \((\subseteq) \) on types and use rule:

\[
\Gamma \vdash t : A \quad A \subseteq B \\
\Gamma \vdash t : B
\]

This does help a bit already:

\[
A \subseteq C \\
\Gamma, x : A \vdash x : C
\]

\[
A \Rightarrow B \subseteq C \quad \Gamma, x : A \vdash t : B \\
\Gamma \vdash \lambda x . t : C
\]

\[
\Gamma \vdash t : A \Rightarrow B \quad \Gamma \vdash u : A \\
\Gamma \vdash t \ u : B
\]

Ideally we would want quantifiers to be handled by subtyping
Containment system [Mitchell]

Is standard containment enough?

\[
\{Y_1, \ldots, Y_m\} \cap FV(\forall X_1 \ldots \forall X_n. A) = \emptyset
\]

\[
\forall X_1 \ldots \forall X_n. A \subseteq \forall Y_1 \ldots \forall Y_m. A[X_1 := B_1, \ldots, X_n := B_n]
\]

\[
\forall X_1 \ldots \forall X_n. A \Rightarrow B \subseteq (\forall X_1 \ldots \forall X_n. A) \Rightarrow (\forall X_1 \ldots \forall X_n. B)
\]

\[
A_2 \subseteq A_1 \quad B_1 \subseteq B_2
\]

\[
A_1 \Rightarrow B_1 \subseteq A_2 \Rightarrow B_2
\]

\[
A \subseteq B \quad B \subseteq C
\]

\[
A \subseteq C
\]

\[
\forall X. A \subseteq \forall X. B
\]
Can we derive the quantifier rules?

Yes we can derive the elimination rule:

\[
\Gamma \vdash t : \forall X. A \\
\Gamma \vdash t : A[X := B]
\]

\[
\Delta \equiv \Gamma \vdash t : \forall X. A \quad \Gamma \vdash t : A[X := B]
\]

\[
\varnothing \cap \text{FV}(\forall X. A) = \varnothing
\]

\[
\forall X. A \subseteq A[X := B]
\]

\[
\Gamma \vdash t : A[X := B]
\]

No we cannot derive the introduction rule:

\[
\Gamma \vdash t : A \\
X \notin \Gamma
\]

\[
\Delta \equiv \Gamma \vdash t : \forall X. A
\]

\[
???
\]

\[
A \subseteq \forall X. A
\]

\[
\Gamma \vdash t : \forall X. A
\]
Let us take a step back...

All we want is adequacy:

- If $\vdash t : A$ is derivable then $t \in [A]$
- If $A \subseteq B$ then $[A] \subseteq [B]$

The subtyping part is not as fine-grained as it could be:

\[
\frac{\vdash t : A \quad A \subseteq B}{\vdash t : B} \quad \text{can be replaced by} \quad \frac{\vdash t : A \quad \vdash t : A \subseteq B}{\vdash t : B}
\]

Local subtyping is interpreted as an implication
Approach 1
(inspired by semantics)
Main idea of the approach

Based on a fine-grained semantic analysis we:

- Get rid of context and only work with closed terms
- To this aim terms are extended with choice operators
- The same kind of trick is used for quantifiers in types

Theorem (Adequacy)

- If $t : A$ is derivable then $[t] \in [A]$
- If $t : A \subseteq B$ is derivable and $[t] \in [A]$ then $[t] \in [B]$

Terms are interpreted using “pure terms”
(satisfying the intended semantic property)
Typing and subtyping rules

Syntax-directed typing rules:

\[
\begin{align*}
\varepsilon_{x \in A}(t \notin B) : A & \subseteq C \\
\varepsilon_{x \in A}(t \notin B) : C
\end{align*}
\]

\[
\begin{align*}
\lambda x. t : A & \Rightarrow B \subseteq C \\
\varepsilon_{x \in A}(t \notin B) : B
\end{align*}
\]

\[
\lambda x. t : C
\]

Syntax-directed (local) subtyping rules:

\[
\begin{align*}
t : A \subseteq A \\
t : A[X := C] \subseteq B \\
t : \forall X. A \subseteq B
\end{align*}
\]

\[
\begin{align*}
t : A \subseteq B[X := \varepsilon_{x}(t \notin B)] \\
t : A \subseteq \forall X. B
\end{align*}
\]

\[
\begin{align*}
\varepsilon_{x \in A_{2}}(t \times \notin B_{2}) : A_{2} \subseteq A_{1} \\
\varepsilon_{x \in A_{2}}(t \times \notin B_{2}) : B_{1} \subseteq B_{2}
\end{align*}
\]

\[
t : A_{1} \Rightarrow B_{1} \subseteq A_{2} \Rightarrow B_{2}
\]
Interpretation of terms and types

We interpret terms using “pure terms“ (without choice operators)

\[[x] = x\quad [\lambda x.t] = \lambda x.[t]\quad [t\ u] = [t\ [u]]\]

\[[\varepsilon_{x\in A(t^* \notin B)}] = \begin{cases} \{u \in [A] \text{ s.t. } [t[x := u]] \notin [B] \text{ if it exists} \\ \text{any } t \in \mathbb{N}_0 \text{ otherwise} \end{cases}\]

We interpret types as (saturated) sets of normalizing terms

\[[\Phi] = \Phi\quad [A \Rightarrow B] = [A] \Rightarrow [B]\quad [\forall X.A] = \bigcap_{\Phi \in \mathcal{F}} [A[X := \Phi]]\]

\[[\varepsilon_{X}(t \notin A)] = \begin{cases} \Phi \in \mathcal{F} \text{ such that } [t] \notin [A[X := \Phi]] \text{ if it exists} \\ \mathbb{N}_0 \text{ otherwise} \end{cases}\]

\[\Phi \Rightarrow \Psi = \{t \mid \forall u \in \Phi, t\ u \in \Psi\}\]
Let us look at one case of the adequacy lemma

$$\lambda x. t : A \Rightarrow B \subseteq C \quad t[x := \varepsilon_{x \in A}(t \notin B)] : B$$

$$\lambda x. t : C$$

$$\left[\varepsilon_{x \in A}(t^* \notin B)\right] = \begin{cases} u \in [A] \text{ s.t. } [t[x := u]] \notin [B] \text{ if it exists} \\ \text{any } t \in \mathcal{N}_0 \text{ otherwise} \end{cases}$$
Approach 2
(using syntactic translations)
A more standard type system

Syntax-directed typing rules:

\[\Gamma, x : A \vdash x : A \subseteq C \]
\[\Gamma, x : A \vdash x : C \]

\[\Gamma \vdash t : A \Rightarrow B \quad \Gamma \vdash u : A \]
\[\Gamma \vdash t u : B \]

\[\Gamma \vdash \lambda x . t : A \Rightarrow B \subseteq C \quad \Gamma, x : A \vdash t : B \]
\[\Gamma \vdash \lambda x . t : C \]

Syntax-directed (local) subtyping rules:

\[\Gamma \vdash t : A \subseteq A \]

\[\Gamma \vdash t : A[X := C] \subseteq B \]
\[\Gamma \vdash t : \forall X . A \subseteq B \]

\[\Gamma \vdash t : A \subseteq B \quad X \notin \Gamma \]
\[\Gamma \vdash t : A \subseteq \forall X . B \]

\[\Gamma, x : A_2 \vdash x : A_2 \subseteq A_1 \quad \Gamma, x : A_2 \vdash t x : B_1 \subseteq B_2 \]
\[\Gamma \vdash t : A_1 \Rightarrow B_1 \subseteq A_2 \Rightarrow B_2 \]
Elimination of subtyping: translation to System $\text{F}+\eta$

System $\text{F}+\eta$ is obtained by adding the rule:

$$
\Gamma \vdash \lambda x. t \; x : A \Rightarrow B \quad x \notin t \\
\Gamma \vdash t : A \Rightarrow B
$$

Theorem (Translation to $\text{F}+\eta$)

- If $\Gamma \vdash t : A$ is derivable then it is also derivable in System $\text{F}+\eta$.
- If $\Gamma \vdash t : A \subseteq B$ is derivable then $\Gamma \vdash t : B$ is derivable in System $\text{F}+\eta$ given a derivation of $\Gamma \vdash t : A$.

Translation of subtyping leads to a “piece of proof”:

If $\Gamma \vdash t : A \subseteq B$ is derivable then we get

$$
\Gamma \vdash t : A \\
\Gamma \vdash \Pi \\
\Gamma \vdash t : B
$$
The most interesting case (arrow subtyping rule)

\[
\Gamma, x : A_2 \vdash x : A_2 \subseteq A_1 \quad \Gamma, x : A_2 \vdash t \ x : B_1 \subseteq B_2 \\
\Gamma \vdash t : A_1 \Rightarrow B_1 \subseteq A_2 \Rightarrow B_2
\]

\[
\Gamma \vdash t : A_1 \Rightarrow B_1 \\
\Gamma, x : A_2 \vdash t : A_1 \Rightarrow B_1 \\
\Gamma, x : A_2 \vdash x : A_2 \quad x \text{ fresh} \\
\Gamma, x : A_2 \vdash x : A_1 \\
\Gamma, x : A_2 \vdash t \ x : B_1 \\
\Gamma, x : A_2 \vdash t \ x : B_2 \\
\Gamma \vdash \lambda x.t \ x : A_2 \Rightarrow B_2 \\
\Gamma \vdash t : A_2 \Rightarrow B_2
\]
Translation from System F+η

Given the subsumption rule the translation is immediate

\[
\begin{align*}
\Gamma \vdash t : A & \quad \Gamma \vdash t : A \subseteq B \\
\hline
\Gamma \vdash t : B
\end{align*}
\]

A couple of remarks:

- We conjecture that subsumption is admissible
- The rule is useful anyway for ascription (rule below)
- (Remember that type-checking remains undecidable here)

\[
\begin{align*}
\Gamma \vdash t : A & \quad \Gamma \vdash t : A \subseteq B \\
\hline
\Gamma \vdash (t : A) : B
\end{align*}
\]
Thanks! Questions?

@ https://lepigre.fr
✉ lepigre@mpi-sws.org