A Call-by-Value Realizability Model with Equivalence (and Subtyping) for PML

Logic and Semantics Seminar - Cambridge 26/02/2016

Rodolphe Lepigre - Université Savoie Mont Blanc
What does PML stand for?

Obviously, ML stands for ML.

We are not so sure about the P yet...

Some ideas:
- pedestrian,
- perverted,
- phantasmagoric,
- pleasurable,
- presumptuous,
- ...

Full list at http://adjectivesstarting.com/with-p/.
PML is a programming language

PML is similar to OCaml or SML:
- call-by-value evaluation,
- ML-like polymorphism,
- Curry-style syntax (no types in terms),
- effects.

Example of program:

```
val rec add n m =
    match n with
    | Zero    -> m
    | Succ nn  -> Succ (add nn m)
```

PML is a proof system

The mechanism for program proving relies on:
- equational reasoning (equivalence of programs),
- dependent product type (Π-type).

The system follows the “program as proof” principle.
(As opposed to the “proof as program” principle.)

Ultimate goal: formalization of mathematics (untyped terms as objects).
Why another proof system?

We want a programming language centered system:
- an efficient, convenient programming language (ML),
- in which properties of programs can be proved (occasionally),
- in the same (programming) language.

Proofs can be composed with programs (i.e. tactics).

Other systems:
- in Coq the proof-terms are hidden behind tactics,
- in Agda the syntax of proof-terms is limited,
- in HOL light, HOL, Isabelle/HOL there are no proof-terms,
- in Why3 proofs are not programs.
Part 1

The type system of PML
Starting point: ML

Three base types:
- function type $A \Rightarrow B$,
- product (record) type $\{l_1 : A_1, \ldots, l_n : A_n\}$,
- sum (variant) type $[C_1 \text{ of } A_1 | \ldots | C_n \text{ of } A_n]$,
- $\{\}$ and $[]$ are “unit” and the empty type.

Effects:
- syntax of the $\lambda\mu$-calculus ($\mu \alpha \ t$, $[\alpha]t$),
- access to the evaluation context,
- future work: references.

Polymorphism (universal quantifier).
\[\lambda x \lambda y \{\text{fst} = x; \ \text{snd} = y\} : \forall X \forall Y (X \rightarrow Y \rightarrow \{\text{fst} : X; \ \text{snd} : Y\}) \]
Terms as individuals

Equality types $t \equiv u$ and $t \not\equiv u$:
- interpreted with observational equivalence,
- t and u are (possibly untyped) terms,
- these types are equivalent to $\{\}$ when the equivalence is true
- and to $[]$ when it is false.

First-order quantification:

\[
\frac{\Gamma \vdash \nu : A \quad a \not\in \text{FV}(\Gamma)}{\Gamma \vdash \nu : \forall a \ A} \quad \frac{\Gamma \vdash t : \forall a \ A}{\Gamma \vdash t : A[a := u]}
\]

Example:

$\nu : \forall n \ (\text{Succ } n \not\equiv \text{Zero})$.
Working with equality

Automatic decision procedure for $t \equiv u$:
- not decidable since (\equiv) contains function extensionality,
- the term \neq can be introduced when an equivalence can be derived.

\[
\begin{align*}
\Gamma \vdash t \equiv u & \quad \Gamma \vdash t \neq u \\
\Gamma \vdash \neq : t \equiv u & \quad \Gamma \vdash \neq : t \neq u
\end{align*}
\]

Example:

\[
\begin{align*}
\vdash \text{add Zero } x \equiv x \\
\vdash \neq : \text{add Zero } x \equiv x \\
\quad x \notin \text{FV}(\emptyset) \\
\vdash \neq : \forall x \, (\text{add Zero } x \equiv x)
\end{align*}
\]
Dependent product type

We want to be able to prove properties of typed terms.

The system includes a \(\Pi \)-type.

\[
\frac{\Gamma, x : A \vdash t : B[a := x]}{\Gamma \vdash \lambda x \, t : \Pi_a : A \, B} \quad \frac{\Gamma \vdash t : \Pi_a : A \, B \quad \Gamma \vdash \nu : A}{\Gamma \vdash t \, \nu : B[a := \nu]}
\]

Example:

\[
\frac{x : \mathbb{N} \vdash \text{add Zero } x \equiv x}{x : \mathbb{N} \vdash \forall : \text{add Zero } x \equiv x} \quad \vdash \lambda x \, \forall : \Pi_n : \mathbb{N} \, \text{add Zero } n \equiv n
\]

PML proof of \(\Pi_n : \mathbb{N} \, \text{add } n \, \text{Zero } \equiv n \):

\[
Y \lambda r \, \lambda x \, \text{case } x \text{ of Zero } \rightarrow \forall | \text{Succ } y \rightarrow r \, y
\]
Soundness issue

Care should be taken when combining:
- call-by-value evaluation,
- side-effects (references, control operators...),
- polymorphism.

The problem extends to the Π-type.

Some typing rules cannot be proved safe:

\[
\frac{\Gamma \vdash t : A \quad X \notin \text{FV}(\Gamma)}{\Gamma \vdash t : \forall X \ A} \quad \frac{\Gamma \vdash t : \Pi_{a : A} B \quad \Gamma \vdash u : A}{\Gamma \vdash t \ u : B[a := u]}
\]
Counter-example

If we extend a pure ML language with references:

```ml
val ref : 'a -> 'a ref
val (!) : 'a ref -> 'a
val (:=) : 'a ref -> 'a -> unit
```

The following program is accepted:

```ml
let r = ref [] in
  r := [true];
  42 + (List.hd !r)
```

A more complex counter-example is required with control operators.
Value restriction

The problem can be solved by restricting some rules to values:

\[
\frac{\Gamma \vdash v : A \quad X \notin \text{FV}(\Gamma)}{\Gamma \vdash v : \forall X A}\quad \frac{\Gamma \vdash t : \Pi_{\alpha:A} B \quad \Gamma \vdash v : A}{\Gamma \vdash t \, v : B[\alpha := v]}\]

Equivalently we may consider having two forms of judgements:
- \(\Gamma \vdash t : A \) where \(t \) is an arbitrary term (maybe a value),
- \(\Gamma \vdash_{\text{val}} v : A \) where \(v \) can only be a value.

The rules become the following.

\[
\frac{\Gamma \vdash_{\text{val}} v : A \quad X \notin \text{FV}(\Gamma)}{\Gamma \vdash_{\text{val}} v : \forall X A}\quad \frac{\Gamma \vdash t : \Pi_{\alpha:A} B \quad \Gamma \vdash_{\text{val}} v : A}{\Gamma \vdash t \, v : B[\alpha := v]}\]

Remark: we need an extra rule:
\[
\frac{}{\Gamma \vdash_{\text{val}} v : A} \quad \Rightarrow \quad \frac{}{\Gamma \vdash v : A}.
\]
Is value restriction satisfactory?

We can cope with value restriction for polymorphism.

Value restriction is too restrictive on the Π-type.

\[
\Gamma \vdash t : \Pi_{a : A} B \quad \Gamma \vdash_{\text{val}} v : A \\
\Gamma \vdash t\,v : B[a := v]
\]

We cannot apply $\lambda x \bowtie : \Pi_{n : \mathbb{N}} \text{add Zero} \, n \equiv n$ to 2×21 (which is not a value).

We need to relax value restriction:

\[
\Gamma, u \equiv v \vdash t : \Pi_{a : A} B \quad \Gamma, u \equiv v \vdash u : A \\
\Gamma, u \equiv v \vdash t\,u : B[a := u]
\]

Remark: we do not encode $A \Rightarrow B$ using the Π-type.
PART 2

A REALIZABILITY MODEL FOR PML
Syntax and Krivine machine

Values, terms and stacks:

\[\begin{align*}
\nu, \nu' & ::= \lambda \alpha \cdot t | C(\nu) | \{ \nu_i \}_{i \in I} | \mathcal{S} \\
\tau, \tau' & ::= \alpha | \nu | \tau \cdot \tau' | \mu \cdot t | [\pi] \cdot t | \nu \cdot l | \text{case } \nu \text{ of } [C_i[x] \rightarrow t_i]_{i \in I} \\
\pi & ::= \alpha | \nu \cdot \pi | [t] \pi
\end{align*} \]

The state of the machine is a process \(t \ast \pi \).
Operational semantics

\[\text{if } C_k[v] \text{ of } [C_i[x] \rightarrow t_i]_{i \in I} \text{ then } \{ l_i = v_i \}_{i \in I} \text{ and } l_k \pi \Rightarrow v_k \pi \]
Interpretation of types

Three levels of interpretation:
- raw semantics $\llbracket A \rrbracket$,
- falsity value $\llbracket A \rrbracket = \{ \pi \mid \forall v \in \llbracket A \rrbracket, v * \pi \in \bot\}$,
- truth value $\llbracket A \rrbracket = \{ t \mid \forall \pi \in \llbracket A \rrbracket, t * \pi \in \bot\}$.

Here, \bot is a set of well-behaved processes.

$$\bot = \{ t * \pi \mid \exists v \in \mathcal{V}, t * \pi \triangleright v * \varepsilon \}$$
Raw semantics

\[[A \Rightarrow B] := \{ \lambda x \, t \mid \forall v \in [A] \, t[x := v] \in [B] \} \]

\[\left[\{l_i : A_i \}_{i \in I} \right] := \{ l_i = v_i \}_{i \in I} \mid \forall i \in I, v_i \in [A_i] \} \]

\[\left[[C_i \text{ of } A_i]_{i \in I} \right] := \bigcup_{i \in I} \{ C_i[v] \mid v \in [A_i] \} \]

\[[\forall a \, A] := \bigcap_{t \in \Lambda_c} [A[a := t]] \]

\[[\exists a \, A] := \bigcup_{t \in \Lambda_c} [A[a := t]] \]

\[[t \equiv u] := [\{\} \text{ when } t \equiv u \text{ and } [\{\}] = \emptyset \text{ otherwise}] \]

\[[t \in A] := \{ v \in [A] \mid v \equiv t \} \]

Remark: the type \(\Pi_{a: A} B \) is encoded as \(\forall a \, (a \in A \Rightarrow B) \).
Soundness

Theorem (*Adequacy Lemma*):
- if t is a term such that $\vdash t : A$ then $t \in |A|$,
- if v is a value such that $\vdash_{val} v : A$ then $v \in \llbracket A \rrbracket$.

Remark: $\llbracket A \rrbracket \subseteq |A|$ by definition.

Intuition: a typed program behaves well (in any well-typed evaluation context).
Observational equivalence

Two programs are equivalent if they behave the same on every input.

We define the equivalence of \(t \) and \(u \) as:

\[
\forall \pi \ t * \pi \text{ behaves well } \iff u * \pi \text{ behaves well.}
\]

Required properties for the equivalence:

- extensionality (if \(v \equiv w \) then \(t[x := v] \equiv t[x := w] \)),
- if \(v \in [A] \) and \(v \equiv w \) then \(w \in [A] \).

\[
\frac{\Gamma, v \equiv w \vdash t[x := v] : A}{\Gamma, v \equiv w \vdash t[x := w] : A} \quad \frac{\Gamma, v \equiv w \vdash t : A[x := v]}{\Gamma, v \equiv w \vdash t : A[x := w]}
\]
Implementation of the decision procedure

We derive rules from the definition of (\cong):
- $(\lambda x \, t) \, v \cong t[x := v]$,
- $\{...l = v...\}.l \cong v$,
- $C[v] \not\cong D[w]$ if $C \not\cong D$,
- $...$

Pseudo-decision algorithm for equivalence:
- efficiency is critical (bottleneck in first implementation),
- data structure: graph with maximal sharing (union find),
- proof by contradiction,
- we can only approximate equivalence,
- the user can help by giving hints.
Relaxing value restriction

With value restriction, some rules are restricted to values.

Idea: a term that is equivalent to a value may be considered a value.

Informal proof:

\[
\begin{align*}
\Gamma, t \equiv v & \vdash t : A \\
\Gamma, t \equiv v & \vdash v : A \\
\quad a \notin \text{FV}(\Gamma) \\
\Gamma, t \equiv v & \vdash \forall a \ A \\
\Gamma, t \equiv v & \vdash t : \forall a \ A
\end{align*}
\]
Semantical value restriction

In every realizability model $\llbracket A \rrbracket \subseteq |A|$.

This provides a semantical justification to the rule

$$
\frac{\Gamma \vdash v : A}{\Gamma \vdash v : A}^\uparrow.
$$

We need to have $|A| \cap \mathcal{V} \subseteq \llbracket A \rrbracket$ to obtain the rule

$$
\frac{\Gamma \vdash v : A}{\Gamma \vdash v : A}^\downarrow.
$$

With this rule we can lift the value restriction to the semantics.

$$
\begin{align*}
\frac{\Gamma, t \equiv v \vdash t : A}{\Gamma, t \equiv v \vdash t : A}^= \\
\frac{\Gamma, t \equiv v \vdash v : A}{\Gamma, t \equiv v \vdash v : A}^\downarrow \\
\frac{\Gamma, t \equiv v \vdash v : A}{\Gamma, t \equiv v \vdash v : A}^\downarrow \\
\frac{\Gamma, t \equiv v \vdash \forall a \ A}{\Gamma, t \equiv v \vdash \forall a \ A}^\uparrow \\
\frac{\Gamma, t \equiv v \vdash t : \forall a \ A}{\Gamma, t \equiv v \vdash t : \forall a \ A}^=
\end{align*}
$$
The new instruction trick

The property $|A| \cap \mathcal{V} \subseteq \llbracket A \rrbracket$ is not true in every realizability model.

To obtain it we extend the system with a new term constructor $\delta_{v,w}$.

We will have $\delta_{v,w} \pi > v \pi$ if and only if $v \not\equiv w$.

Idea of the proof:
- suppose $v \not\in \llbracket A \rrbracket$ and show $v \not\in |A|$,
- we need to find π such that $v \pi \not\in \bot$ and $\forall w \in \llbracket A \rrbracket, w \pi \in \bot$,
- we can take $\pi = \lambda x \delta_{x,v} \varepsilon$,
- $v \pi [\lambda x \delta_{x,v} \varepsilon] > \lambda x \delta_{x,v} \pi v \varepsilon > \delta_{v,v} \pi \varepsilon$,
- $w \pi [\lambda x \delta_{x,v} \varepsilon] > \lambda x \delta_{x,v} w \pi \varepsilon > \delta_{w,v} \pi \varepsilon > w \pi \varepsilon$.

23 / 25
Stratified reduction and equivalence

Problem: the definitions of \((>) \) and \((\equiv) \) are circular.

We need to rely on a stratified construction of the two relations

\[
(\rightarrow_i) = (>) \cup \{(\delta_{v,w} \ast \pi, v \ast \pi) \mid \exists j < i, v \neq_j w\}
\]

\[
(\equiv_i) = \{(t, u) \mid \forall j \leq i, \forall \pi \in \Pi, \forall \sigma, t\sigma \ast \pi \downarrow_j \iff u\sigma \ast \pi \downarrow_j\}
\]

We then take

\[
(\rightarrow) = \bigcup_{i \in \mathbb{N}} (\rightarrow_i) \quad \text{and} \quad (\equiv) = \bigcap_{i \in \mathbb{N}} (\equiv_i)
\]

With these definitions, \((\equiv) \) is indeed extensional...
Current and future work

Subtyping without coercions (almost finished):
- useful for programming (modules, classes...),
- provide injections between types for free,
- judgement $\vdash A \subseteq B$ interpreted as $\llbracket A \rrbracket \subseteq \llbracket B \rrbracket$ in the semantics.

Recursion and (co-)inductive types (in progress):
- the types $\mu X A$ and $\nu X A$ will be handled by subtyping,
- we need to extend the language with a fixpoint,
- termination needs to be ensured to preserve soundness.

Theoretical investigation (for later):
- can we use $\delta_{v,w}$ to realize new formulas,
- how do we encode real maths in the system?
THANK YOU!

HTTP://PATOLINE.ORG