Realizability, Testing and Game Semantics

GaLoP 2014 (Grenoble)

Rodolphe Lepigre - LAMA, UMR 5127
Operational framework for game semantics (P. Clairambault)

A play is an interactive program in a Krivine's Abstract Machine

Implements a winning strategy for typed terms

Aim: give a direct proof that the execution of such terms is well-behaved
Syntax

\[t, u, v ::= x \mid \lambda x . t \mid u \, v \mid \text{cc} \]

Four kinds of terms:
- Variable
- \(\lambda \)-abstraction
- Function application
- Call/cc
Simple types

\[A, B, C ::= \lambda \mid A \to B \]

Types are built using:
- Base types (Atomic types)
- Functions

Context:
- Finite set of type declarations
- \(\Gamma = x_1 : A_1, \ldots, x_n : A_n \)

Typing judgement:
\[\Gamma \vdash t : A \]
Typing rules

\[\Gamma, x : A \vdash t : B \quad \Rightarrow_i \quad \Gamma \vdash \lambda x.t : A \rightarrow B \]

\[\Gamma \vdash u : A \rightarrow B \quad \Gamma \vdash v : A \quad \Rightarrow_e \quad \Gamma \vdash u \cdot v : B \]

\[\Gamma, x : A \vdash x : A \quad \Rightarrow_{Ax} \]

\[\Gamma \vdash cc : ((A \rightarrow B) \rightarrow A) \rightarrow A \quad \Rightarrow_{cc} \]
A closure is a couple $\langle t, \sigma \rangle$ where:

- t is a term
- σ is an environment

σ maps free variables of t to closures

Notation (extend): $\sigma + \{x \mapsto c\}$
Classical Realizability

Typing:
- A way to identify correct programs
- Based on the syntax
- Many working programs are rejected

\[
\text{let } \text{succ} = \text{fun } n \rightarrow \text{if } \text{true } \text{then } n + 1 \text{ else } \text{false}
\]

Realizability:
- Another way of identifying correct programs
- Based on the notion of evaluation
- Compatible with typing
Stacks and processes

\[\pi, \rho ::= \varepsilon \mid c.\pi \]

Stacks are built:
- Using the empty stack \(\varepsilon \)
- By pushing a closure \(c \) on a stack \(\pi \)

A process is a couple \(c \star \pi \) where:
- \(c \) is a closure
- \(\pi \) is a stack

\[\vdash \varepsilon : \mathcal{X} \]

\[\vdash c : A \quad \vdash \pi : B \]

\[\vdash c.\pi : (A \rightarrow B) \]

\[\vdash c : A \quad \vdash \pi : \mathcal{A} \]

\[\vdash c \star \pi : \perp \]
Stacks as “first class” objects

Stacks can be seen as execution contexts

Classical computation amounts to manipulating stacks (call/cc)

A stack \(\pi \) is a closed object:
- It can be seen as a constant that we denote \(k_\pi \)
- \(k_\pi \) is a new form of closure

One more typing rule:

\[
\begin{align*}
\vdash \pi : A^\bot \\
\vdash k_\pi : A \rightarrow B
\end{align*}
\]
Summary of the syntax

\[\begin{align*}
 t, u, v & ::= \; x \; | \; \lambda x.t \; | \; u \; v \; | \; \mathsf{cc} \\
 c & ::= \; \langle t, \sigma \rangle \; | \; \mathsf{k}_\pi \\
 \pi, \rho & ::= \; \varepsilon \; | \; c.\pi \\
 p, q & ::= \; c \star \pi
\end{align*} \]
Reduction relation

\[\langle x, \sigma \rangle \star \pi \quad \rightarrow \quad \sigma(x) \star \pi \]

\[\langle \lambda x. t, \sigma \rangle \star c. \pi \quad \rightarrow \quad \langle t, \sigma + \{ x \mapsto c \} \rangle \star \pi \]

\[\langle t \ u, \sigma \rangle \star \pi \quad \rightarrow \quad \langle t, \sigma \rangle \star \langle u, \sigma \rangle. \pi \]

\[\langle c c, \sigma \rangle \star c. \pi \quad \rightarrow \quad c \star k_{\pi}. \pi \]

\[k_{\pi} \star c. \pi' \quad \rightarrow \quad c \star \pi \]
Pole, falsity values and truth values

Parameters:
- A set of processes \bot (closed under anti-reduction)
- An interpretation I for base types

Falsity values (set of stacks):
$$
||X||_\bot = I_X \quad ||A \rightarrow B||_\bot = \{c.\pi \mid c \in |A|_\bot, \pi \in ||B||_\bot\}
$$

Truth values (set of closures):
$$
|A|_\bot = \{c \in A \mid \forall \pi \in ||A||_\bot \ c \star \pi \in \bot\}
$$

The realizability relation (\models_\bot) is defined as:
$$
c \models_\bot A \iff c \in |A|_\bot$$
Soundness (adequacy)

Theorem 1.

Let \perp be a pole. If we have:

- $\Gamma \vdash t : \Lambda$
- $\sigma \models_{\perp} \Gamma$

then $\langle t, \sigma \rangle \models_{\perp} \Lambda$.

Corollary 1.

Let \perp be pole. If $\vdash p : \perp$, then $p \in \perp$.
New terms: channels

A channel is a term \([\Delta \Rightarrow X]\) where
- \(\Delta\) is a context
- \(X\) is an atomic type

\[
\frac{\Delta \subseteq \Gamma}{\Gamma \vdash [\Delta \Rightarrow X] : X}_{\text{Ch}}
\]
Realizability with channels

Channel substitution Σ:
- Replace every channel $\alpha = [\Delta \Rightarrow X]$ by a term t_α
- With $\langle t_\alpha, \sigma \rangle \vdash X$ for every $\sigma \vdash \Delta$

Theorem 2.
Let \perp be a pole, and Σ be a channel substitution. If we have:
- $\Gamma \vdash t : \Lambda$
- $\sigma \vdash \Gamma$
then $\langle t\Sigma, \sigma \rangle \vdash \Lambda$.

Corollary 2.
Let \perp be a pole, and Σ be a channel substitution. If $\vdash p : \perp$, then $p\Sigma \in \perp$.
The “good”, the “bad” and the “channel”

Final states are processes that cannot be reduced further using \((\rightarrow)\)

They can be of three kinds:
- “Channel” states: processes of the form \(\langle \Delta \Rightarrow X \rangle, \sigma \star \pi\)
- “Bad” final states: processes of the form
 - \(\langle \lambda x.t, \sigma \rangle \star \varepsilon\)
 - \(k_\pi \star \varepsilon\)
- “Good” final states: final states that are neither of the above

We denote the corresponding sets \(\mathcal{C}, \mathcal{B}, \text{ and } \mathcal{C}\)
Normalization

Theorem 3.
If \(p \) is a process such that \(\vdash p : \bot \) then
- either \(p \rightarrow^* q \in \mathcal{G} \)
- or \(p \rightarrow^* q \in \mathcal{E} \).

Proof. (by realizability)
Theorem 3.

If \(p \) is a process such that \(\vdash p : \bot \) then

- either \(p \rightarrow^* q \in \mathcal{G} \)
- or \(p \rightarrow^* q \in \mathcal{C} \).

Proof. (by realizability)

- We consider the pole \(\bot_{\mathcal{N}} = \{ p \mid p \rightarrow^* q \in \mathcal{G} \cup \mathcal{C} \} \)
Normalization

Theorem 3.
If p is a process such that $\vdash p : \bot$ then
- either $p \rightarrow^* q \in \mathcal{G}$
- or $p \rightarrow^* q \in \mathcal{C}$.

Proof. (by realizability)
- We consider the pole $\bot_{\mathcal{N}} = \{ p \mid p \rightarrow^* q \in \mathcal{G} \cup \mathcal{C} \}$
- Since $\mathcal{C} \subseteq \bot_{\mathcal{N}}$ we have $\langle [\Delta \Rightarrow X], \sigma \rangle \Downarrow_{\bot_{\mathcal{N}}} X$
Normalization

Theorem 3.

If p is a process such that $\vdash p : \bot$ then
- either $p \rightarrow^* q \in \mathcal{G}$
- or $p \rightarrow^* q \in \mathcal{C}$.

Proof. (by realizability)
- We consider the pole $\bot_N = \{ p \mid p \rightarrow^* q \in \mathcal{G} \cup \mathcal{C} \}$
- Since $\mathcal{C} \subseteq \bot_N$ we have $\langle [\Delta \Rightarrow X], \sigma \rangle \models_{\bot_N} X$
- Σ_{id} is a channel substitution for \bot_N

□
Normalization

Theorem 3.
If \(p \) is a process such that \(\vdash p : \bot \) then
- either \(p \rightarrow^* q \in \mathcal{G} \)
- or \(p \rightarrow^* q \in \mathcal{C} \).

Proof. (by realizability)
- We consider the pole \(\bot_\mathcal{N} = \{ p \mid p \rightarrow^* q \in \mathcal{G} \cup \mathcal{C} \} \)
- Since \(\mathcal{C} \subseteq \bot_\mathcal{N} \) we have \(\langle [\Delta \Rightarrow X], \sigma \rangle \models_{\bot_\mathcal{N}} X \)
- \(\Sigma_{id} \) is a channel substitution for \(\bot_\mathcal{N} \)
- Since \(\vdash p : \bot \) we obtain that \(p\Sigma_{id} = p \in \bot_\mathcal{N} \) \(\square \)
What about reducing channels?

A channel $[\Delta \Rightarrow X]$ should reduce to terms t such that $\Delta \vdash t : X$

Let $\Delta = s : N \rightarrow N$, $z : N$ be a context

We want $[\Delta \Rightarrow N]$ to reduce to either of:

- z
- $s[\Delta \Rightarrow N]$

Let $\Gamma = f : (X \rightarrow X) \rightarrow X$ be a context

We want $[\Gamma \Rightarrow X]$ to reduce to:

- $f \lambda x.[\Gamma, x : X \Rightarrow X]$
- Which might be reduced further to $f \lambda x.x$
The reduction of channels

\[
\text{ANF}(\Delta \Rightarrow X) = \{ x t_1 \ldots t_k \mid \Delta(x) = (\overrightarrow{A_1 \rightarrow X_1}) \ldots (\overrightarrow{A_k \rightarrow X_k}) \rightarrow X \}
\]

Where \(t_i = \lambda x_i. [\Delta, x_i : \overrightarrow{A_i \Rightarrow X_i}] \)

We define \((\rightarrow)\) to be the smallest relation such that:
- \((\rightarrow) \subseteq (\rightarrow)\)
- For all \(a \in \text{ANF}(\Delta \Rightarrow X)\),

\[
\langle [\Delta \Rightarrow X], \sigma \rangle \star \pi \rightarrow \langle a, \sigma \rangle \star \pi
\]
What was our goal again?

A play consists of a run of a process p in the machine

The Player reduces the term using (\rightarrow)

When a channel is reached, the Opponent takes over

Opponent move: one step of (\rightarrow) reduction

Conjecture 1.

If p is a process such that $\vdash p : \bot$, a run of p using (\rightarrow) cannot:

- Stop on a “bad” final state
- Contain an infinite sequence of (\rightarrow) reductions
Subject reduction

Theorem 4.
If p and q are processes such that:

- $\vdash p : \bot$
- $p \rightarrow q$

then $\vdash q : \bot$.
Reduction to a “bad” state

Theorem 5.
If $\vdash p : \bot$, then it is not possible that $p \rightarrow^* q \in \mathcal{B}$.

Proof. (by contradiction)
Reduction to a “bad” state

Theorem 5. If $\vdash p : \bot$, then it is not possible that $p \rightarrow^* q \in \mathcal{B}$.

Proof. (by contradiction)
- We suppose that $p \rightarrow^* q \in \mathcal{B}$
Reduction to a “bad” state

Theorem 5.

If $\vdash p : \bot$, then it is not possible that $p \rightarrow^* q \in \mathcal{B}$.

Proof. (by contradiction)

- We suppose that $p \rightarrow^* q \in \mathcal{B}$
- $\vdash p : \bot \Rightarrow \vdash q : \bot$ (subject reduction)
Reduction to a “bad” state

Theorem 5.

If \(\vdash p : \bot \), then it is not possible that \(p \rightarrow^* q \in B \).

Proof. (by contradiction)

- We suppose that \(p \rightarrow^* q \in B \)
- \(\vdash p : \bot \Rightarrow \vdash q : \bot \) (subject reduction)
- \(q \rightarrow^* q' \in G \cup C \) (normalization theorem)
Reduction to a “bad” state

Theorem 5.
If \(\vdash p : \bot \), then it is not possible that \(p \rightarrow^* q \in \mathcal{B} \).

Proof. (by contradiction)
- We suppose that \(p \rightarrow^* q \in \mathcal{B} \)
- \(\vdash p : \bot \Rightarrow \vdash q : \bot \) (subject reduction)
- \(q \rightarrow^* q' \in \mathcal{G} \cup \mathcal{C} \) (normalization theorem)
- \(q' = q \) (q is a final state)

\[\square \]
Reduction to a “bad” state

Theorem 5.

If $\vdash p : \bot$, then it is not possible that $p \rightarrow^* q \in \mathcal{B}$.

Proof. (by contradiction)
- We suppose that $p \rightarrow^* q \in \mathcal{B}$
- $\vdash p : \bot \Rightarrow \vdash q : \bot$ (subject reduction)
- $q \rightarrow^* q' \in \mathcal{G} \cup \mathcal{C}$ (normalization theorem)
- $q' = q$ (q is a final state)
- Contradiction: $\mathcal{B} \cap (\mathcal{G} \cup \mathcal{C}) = \emptyset$
Infinite reduction, infinite interaction

Theorem 6.
We consider $\vdash p : \bot$ and suppose that there exists an infinite run R of the machine starting from p using (\Rightarrow). The run R should go through infinitely many “channel” states.

Proof. (by contradiction)
Infinite reduction, infinite interaction

Theorem 6.
We consider ⊢ p : ⊥ and suppose that there exists an infinite run R of the machine starting from p using (→). The run R should go through infinitely many “channel” states.

Proof. (by contradiction)
- We suppose that R goes through exactly n “channel” states
Infinite reduction, infinite interaction

Theorem 6.
We consider \(\vdash p : \bot \) and suppose that there exists an infinite run \(R \) of the machine starting from \(p \) using \((\rightarrow) \). The run \(R \) should go through infinitely many “channel” states.

Proof. (by contradiction)
- We suppose that \(R \) goes through exactly \(n \) “channel” states
- We consider \(p' \), the \(n \)-th “channel” state in the reduction of \(p \)
Infinite reduction, infinite interaction

Theorem 6.
We consider $\vdash p : \bot$ and suppose that there exists an infinite run R of the machine starting from p using (\rightarrow). The run R should go through infinitely many “channel” states.

Proof. (by contradiction)

- We suppose that R goes through exactly n “channel” states
- We consider p', the n-th “channel” state in the reduction of p
- There is q' such that $p' \rightarrow q'$ (otherwise R was not infinite)
Infinite reduction, infinite interaction

Theorem 6.

We consider $\vdash p : \bot$ and suppose that there exists an infinite run R of the machine starting from p using (\rightarrow). The run R should go through infinitely many “channel” states.

Proof. (by contradiction)

- We suppose that R goes through exactly n “channel” states
- We consider p', the n-th “channel” state in the reduction of p
- There is q' such that $p' \rightarrow q'$ (otherwise R was not infinite)
- Since $p \rightarrow^* q'$, $\vdash q' : \bot$ (subject reduction)
Infinite reduction, infinite interaction

Theorem 6.
We consider ⊨ p : ⊥ and suppose that there exists an infinite run R of the machine starting from p using (⇒). The run R should go through infinitely many “channel” states.

Proof. (by contradiction)
- We suppose that R goes through exactly n “channel” states
- We consider p', the n-th “channel” state in the reduction of p
- There is q' such that p' ⇒ q' (otherwise R was not infinite)
- Since p ⇒* q', ⊨ q' : ⊥ (subject reduction)
- q' ⇒* q ∈ G ∪ C (normalization theorem)
Infinite reduction, infinite interaction

Theorem 6.

We consider ⊢ p : ⊥ and suppose that there exists an infinite run R of the machine starting from p using (⇒). The run R should go through infinitely many “channel” states.

Proof. (by contradiction)
- We suppose that R goes through exactly n “channel” states
- We consider p', the n-th “channel” state in the reduction of p
- There is q' such that p' ⇒ q' (otherwise R was not infinite)
- Since p ⇒* q', ⊢ q' : ⊥ (subject reduction)
- q' ⇒* q ∈ G ∪ C (normalization theorem)
 - If q ∈ G then R was not infinite
Infinite reduction, infinite interaction

Theorem 6.
We consider ⊨ p : ⊥ and suppose that there exists an infinite run R of the machine starting from p using (⇒). The run R should go through infinitely many “channel” states.

Proof. (by contradiction)
- We suppose that R goes through exactly n “channel” states
- We consider p', the n-th “channel” state in the reduction of p
- There is q' such that p' → q' (otherwise R was not infinite)
- Since p →* q', ⊨ q' : ⊥ (subject reduction)
- q' →* q ∈ \mathcal{G} ∪ \mathcal{C} (normalization theorem)
 - If q ∈ \mathcal{G} then R was not infinite
 - If q ∈ \mathcal{C} then R would contain more than n “channels”
Without subject reduction?

We need a pole:
- Closed under $(\rightarrow)^{-1}$
- Containing \mathcal{G}
- Not containing any element of \mathcal{B}
- Closed under (\rightarrow)
- In which channels realize their type
Thank you!