
Internship report

Testing judgements of type theory

Chalmers Tekniska Högskola, Göteborg

Rodolphe Lepigre
Université de Savoie, Chambéry

rodolphe.lepigre@etu.univ-savoie.fr

Under the supervision of Peter Dybjer
peterd@chalmers.se

August 23, 2012

Abstract

We investigate a testing framework for type theory. We first describe
the Krivine Abstract Machine (KAM), and the Testing KAM (TKAM)
which is a modified version of the KAM that allows the testing of terms
of the PCF language. This follows notes by Pierre Clairambault ([1]).

We use two versions of the TKAM . The first one is restricted to the
Finite System T language and the second one has lazy natural numbers.

We then use the virtual machines as the central part of a testing pro-
cedure for the typing of terms.

This work is an implementation of certain aspects of the testing manual
for intuitionistic type theory described in Peter Dybjer’s paper Program
Testing and Constructive Validity [2].

Keywords: lazy instantiation / generation, transition function, testing
the typing, implementation.

1

Acknowledgements

First of all I would like to thank Peter Dybjer for accepting me for this intern-
ship and for his help throughout the summer. It has been a very worthwhile
experience which helped me confirm my interest in the field of type theory.

I would also like to thank all my other teachers at Chalmers for their inter-
esting and valuable lessons which allowed me to really recognise the areas that
are of the greatest interest for me.

I also wish to thank Pierre Hyvernat, my tutor for this project, for all his
help and encouragement during my studies.

Thank you also to Laurence Vignollet for encouraging me to spend this year
abroad, and for allowing me to choose a research internship rather than one in
industry.

Finally I would like to thank all my teachers at the Université de Savoie for
their help and support throughout my university career.

2

Contents

Introduction 5

1 Preliminaries 5
1.1 Krivine Abstract Machine and λ-calculus 5
1.2 Finite System T . 6

1.2.1 The Testing KAM restricted to Finite System T 6
1.2.2 Atomic normal forms in Finite System T 7

1.3 PCF . 8
1.3.1 The Lazy TKAM . 8
1.3.2 Atomic normal forms in PCF 9

2 Testing Judgements of Finite System T 9
2.1 Using the TKAM to test judgements 9
2.2 Implementation . 11

2.2.1 Data structures . 11
2.2.2 Transition function . 12
2.2.3 Atomic normal forms . 14
2.2.4 Testing function . 15

3 Testing Judgements of PCF 16
3.1 Using the LTKAM to test judgements 16
3.2 Implementation . 18

3.2.1 Data structures . 18
3.2.2 Transition function . 18
3.2.3 Atomic normal forms . 19
3.2.4 Testing function . 20

Conclusion and future work 20

References 21

A Literate Haskell doc. (F. System T) 22
A.1 Finite System T . 22
A.2 State of the TKAM . 23
A.3 Transition function . 24
A.4 Atomic normal forms . 26
A.5 Testing . 27
A.6 Convenient functions for testing 28
A.7 Examples . 28

B Literate Haskell doc. (PCF) 30
B.1 PCF . 30
B.2 State of the LTKAM . 31
B.3 Transition function . 32
B.4 Atomic normal forms . 35
B.5 Testing . 36
B.6 Convenient functions for testing 37
B.7 Examples . 38

3

C Résumé et mots clés 40

4

Introduction

Program testing is one way of checking that a program meets its specifications.
There exists a few frameworks that allow testing with automatic input genera-
tion such as QuickCheck [3] or SmallCheck [4] for the language Haskell.

These tools allow the testing of predicates over the application of generated
input to a function. The input may be generated in different ways, QuickCheck
uses random generation, and SmallCheck generates the input in a systematic
way.

The same kind of tool have been investigated for dependent types by Qiao
Haiyan [5]. It is shown that testing might be used as a tool during the construc-
tion of a proof.

What we mean by testing is quite different from what has been described
in QuickCheck -like programs. Our approach has been presented as a testing
manual for intuitionistic type theory by Peter Dybjer in [2]. It is about testing
the following form of judgement,

Γ ` a : T

(the term a has type T in the context Γ) as opposed to the testing of a predicate

Γ ` P(a)

(the predicate P(a) is true in context Γ).

Content of the report. In the first section we present the Krivine Abstract
Machine (KAM) together with one of its variations, the Testing KAM, described
by Pierre Clairambault in [1]. We give two versions of the TKAM , the first one
is restricted to the Finite System T language, and the second one is similar
to the original TKAM (designed for PCF), but we extend it with lazy natural
numbers.

The second section contains the definition of a testing framework for Finite
System T, together with its implementation.

In the third section the testing framework and implementation are extended
to the PCF language.

A full description of the implementations can be found in the appendix, in
the form of a Literate Haskell documentation.

1 Preliminaries

1.1 Krivine Abstract Machine and λ-calculus

In this section we consider the very simple language of the λ-calculus. A term
can be either a variable, a λ-expression or an application.

t ::= x | λx.t | t t

An environment is a function σ that maps variables to closures, and closures
are couples of a term and an environment.

The Krivine Abstract Machine (KAM) also contains a stack, which is simply
a list of closures.

π ::= π0 | (t, σ) . π

5

The KAM ’s state is a triple of a term, an environment and a stack. And the
computation is defined in term of transitions. When there is no possible tran-
sition, the machine stops, and the state becomes the final state. The transition
function → is defined by the following.

〈x, π, σ〉 → 〈σ1(x), π, σ2(x)〉
〈λx.t, σx.π, σ〉 → 〈t, π, σ + {x 7→ σx}〉
〈t1 t2, π, σ〉 → 〈t1, (t2, σ).π, σ〉

We will now try to run an example term using our definition of the KAM .
We consider the term (λx.x x) (λx.x). The starting state of the machine is the
following.

〈(λx.x x) (λx.x), π0, ∅〉

The following is a full computation starting from this state.

〈(λx.x x) (λx.x), π0, ∅〉
→ 〈λx.x x, (λx.x, ∅).π0, ∅〉
→ 〈x x, π0, {x 7→ (λx.x, ∅)}〉
→ 〈x, (x, {x 7→ (λx.x, ∅)}).π0, {x 7→ (λx.x, ∅)}〉
→ 〈λx.x, (x, {x 7→ (λx.x, ∅)}).π0, ∅〉
→ 〈x, π0, {x 7→ (x, {x 7→ (λx.x, ∅)})}〉
→ 〈x, π0, {x 7→ (λx.x, ∅)}〉
→ 〈λx.x, π0, ∅〉

The term in the final state is the identity function λx.x, as it was to be
expected.

1.2 Finite System T

We introduce a simple typed language based on the λ-calculus. The language
has a single atomic type which is Bool, and a function type.

T ::= Bool | T → T

The terms of the language are the following, including the constants true
and false.

t ::= x | λx.t | t t | T | F | caseB t t t

The typing rules are the usual ones.

1.2.1 The Testing KAM restricted to Finite System T

We need to extend the language with an additional term, namely channels.
Channels do not bellong to the language, they are metaterms. They play the
role of metavariables, and will be eventually replaced by generated expressions
during computation. A channel c always carry a type T and a context Γ. We
write cTΓ .

The TKAM is a virtual machine, based on the KAM . Its state is a quadruple
〈t , π, σ, τ〉 where (t, σ) is a closure, π is a stack of closures and τ is a partial

6

function that maps channels to atomic normal forms (which will be defined
in the next section). This environment allows the machine to keep track of
the instantiation of channels, and keep the language pure. The empty stack is
denoted π0.

The transition function
Γ
; for the TKAM is exhibited bellow. Note that it

depends on a context Γ.

〈x, π, σ, τ〉 Γ
; 〈σ1(x), π, σ2(x), τ〉

〈λx.M, π0, σ, τ〉
Γ
; 〈M, π0, σ + {x 7→ (c

Γ(x)
Γ , σ)}, τ〉

〈λx.M, σN .π, σ, τ〉
Γ
; 〈M, π, σ + {x 7→ σN)}, τ〉

〈M N, π, σ, τ〉 Γ
; 〈M, (N, σ).π, σ, τ〉

〈caseB M NT NF, π, σ, τ〉
Γ
; 〈M, (NT, σ).(NF, σ).π, σ, τ〉

〈T, (NT, σT).(NF, σF).π, σ, τ〉
Γ
; 〈NT, π, σT, τ〉

〈F, (NT, σT).(NF, σF).π, σ, τ〉
Γ
; 〈NF, π, σF, τ〉

〈c, π, σ, τ〉 c ∈ dom(τ)
Γ
; 〈τ(c), π, σ, τ〉

When a state of the following form is reached, there is a need for a channel
instantiation.

〈cAΓ , π, σ, τ〉 c 6∈ dom(τ)

An atomic normal form M of type A in context Γ is generated. Then the
computation resumes with the following state.

〈M, π, σ, τ + {cAΓ 7→M}〉

Of course, there must be no collision between the names of the channels used
in M and the channels in dom(τ).

1.2.2 Atomic normal forms in Finite System T

An Atomic normal form always depends on a type T and a context Γ, we denote
it anfΓ(T).

There are two cases. Either T has the canonical form
−→
A → Bool, and in

that case we define

anfΓ(
−→
A → Bool) = {λ−→x .M |M ∈ anf−→x :

−→
A.Γ

(Bool)}

or T = Bool, and we define

anfΓ(Bool) = {T, F} ∪ {caseB (x −→c) cT cF |

x :
−→
A → Bool ∈ Γ,

ci ∈ CAi

Γ ,

cT, cF ∈ CBool
Γ }

where CA
Γ is the set of channels of type A in context Γ.

7

1.3 PCF

PCF is a more expressive language, it is basicaly Finite System T extended
with natural numbers and a fixed point combinator.

The types are now the following.

T ::= Bool | Nat | T → T

And the terms are the following.

t ::= x | λx.t | t t | Y t | T | F | caseB t t t | Z | S t | caseN t t t

Note that it is possible to define iszero, pred or natrec using the core language
only.

iszero
def
= λt.caseN t T (λx.F)

pred
def
= λt.caseN t Z (λx.x)

natrec
def
= Y (λrtgn.caseN n t (λp.g p (r t g p)))

1.3.1 The Lazy TKAM

The TKAM that we present here is a little bit different from the original version
defined by Pierre Clairambault in [1]. However the aim of the Lazy TKAM is still
to computes open expressions of the PCF language by introducing metavariables
in the expression (called channels). And when a value is needed for a channel,
a so-called atomic normal form is generated.

We need to extend the language with channels (cTΓ) in the same way as in
the previous section. Once again, channels are metaterms. They are introduced
during computation and replaced by special terms called atomic normal forms.

Much like the TKAM , the Lazy TKAM ’s state is a quadruple 〈t , π, σ, τ〉
where (t, σ) is a closure, π is a stack of closures and τ is a partial function that
maps channels to atomic normal forms.

The transition function of the machine is defined as follow.

〈x, π, σ, τ〉 Γ
; 〈σ1(x), π, σ2(x), τ〉

〈λx.M, π0, σ, τ〉
Γ
; 〈M, π0, σ + {x 7→ (c

Γ(x)
Γ , σ)}, τ〉

〈λx.M, σN .π, σ, τ〉
Γ
; 〈M, π, σ + {x 7→ σN)}, τ〉

〈M N, π, σ, τ〉 Γ
; 〈M, (N, σ).π, σ, τ〉

〈YM, π, σ, τ〉 Γ
; 〈M, (YM,σ).π, σ, τ〉

〈caseB M NT NF, π, σ, τ〉
Γ
; 〈M, (NT, σ).(NF, σ).π, σ, τ〉

〈T, (NT, σT).(NF, σF).π, σ, τ〉
Γ
; 〈NT, π, σT, τ〉

〈F, (NT, σT).(NF, σF).π, σ, τ〉
Γ
; 〈NF, π, σF, τ〉

〈caseN M NZ NS, π, σ, τ〉
Γ
; 〈M, (NZ, σ).(NS, σ).π, σ, τ〉

〈Z, (NZ, σZ).(NS, σS).π, σ, τ〉
Γ
; 〈NZ, π, σZ, τ〉

〈SM, (NZ, σZ).(NS, σS).π, σ, τ〉
Γ
; 〈NS M, π, σS, τ〉

〈c, π, σ, τ〉 c ∈ dom(τ)
Γ
; 〈τ(c), π, σ, τ〉

8

As for the TKAM in the previous section, when a state of the following form
is reached, there is a need for a channel instantiation.

〈cAΓ , π, σ, τ〉 c 6∈ dom(τ)

An atomic normal form M of type A in context Γ is generated. Then the
computation resumes with the following state.

〈M, π, σ, τ + {cAΓ 7→M}〉

1.3.2 Atomic normal forms in PCF

The definition of an atomic normal form of type T in context Γ for PCF is split
into three cases.

First, when T has the canonical form
−→
A → G where G ∈ {Nat, Bool} we

define

anfΓ(
−→
A → G) = {λ−→x .M |M ∈ anf−→x :

−→
A.Γ

(G)}

When T = Bool we have the following.

anfΓ(Bool) = {T, F} ∪ {caseB (x −→c) d e | x :
−→
A → Bool ∈ Γ,

ci ∈ CAi

Γ , d, e ∈ CBool
Γ }

∪ {caseN (x −→c) d e | x :
−→
A → Nat ∈ Γ,

ci ∈ CAi

Γ , d ∈ CBool
Γ , e ∈ CNat→Bool

Γ }

When T = Nat we have the following.

anfΓ(Nat) = {Z} ∪ {S c | c ∈ CNat
Γ }

∪ {caseN (x −→c) d e | x :
−→
A → Nat ∈ Γ,

ci ∈ CAi

Γ , d ∈ CNat
Γ , e ∈ CNat→Nat

Γ }

∪ {caseB (x −→c) d e | x :
−→
A → Bool ∈ Γ,

ci ∈ CAi

Γ , d, e ∈ CNat
Γ }

2 Testing Judgements of Finite System T

We have not done any testing so far. We only gave a definition of the TKAM ,
together with atomic normal forms of a given type, in a given context.

We are now going to present what it mean to test a judgement in Finite
System T, but first we need to change a little bit the TKAM , so that we can
use it as the central part of our testing framework. We will then show an
implementation of the testing manual.

2.1 Using the TKAM to test judgements

The TKAM is going to be used for testing judgements of the following form.

Γ ` a : T

9

Remark that testing the following judgements is equivalent.

Γ ` f : T1 → T2 Γ, x : T1 ` f x : T2

Hence it is easy to reduce any judgement to one of the following form.

Γ ` a : Bool

We now need to make some changes to the transition function of the TKAM .
In particular, we will need it to yield different kinds of states, that we call

• continuation states,

• value states,

• error states

• and instantiation states.

First we give the transition rules that lead to a continuation state. This
mean that their result can be used as a starting point for a new transition.

〈caseB M NT NF, π, σ, τ〉
Γ
; 〈M, (NT, σ).(NF, σ).π, σ, τ〉

〈T, (NT, σT).(NF, σF).π, σ, τ〉
Γ
; 〈NT, π, σT, τ〉

〈F, (NT, σT).(NF, σF).π, σ, τ〉
Γ
; 〈NF, π, σF, τ〉

〈M N, π, σ, τ〉 Γ
; 〈M, (N, σ).π, σ, τ〉

〈λx.M, σN .π, σ, τ〉
Γ
; 〈M, π, σ + {x 7→ σN)}, τ〉

〈x, π, σ, τ〉 x ∈ dom(σ)
Γ
; 〈σ1(x), π, σ2(x), τ〉

〈x, π, σ, τ〉 x 6∈ dom(σ)
Γ
; 〈cΓ(x)

Γ , π, σ + {x 7→ c
Γ(x)
Γ }, τ〉

〈c, π, σ, τ〉 c ∈ dom(τ)
Γ
; 〈τ(c), π, σ, τ〉

The second group of transition rules is the group of rules giving value states
as output. The value states are in one sense the end of the computation.

〈T, π0, σ, τ〉
Γ
; value T

〈F, π0, σ, τ〉
Γ
; value F

〈λx.M, π0, σ, τ〉
Γ
; value λx.M

The third group is the group of transitions yielding an error state. This
simply mean that such transition leads to failure.

〈T, (N, σN).π0, σ, τ〉
Γ
; error

〈F, (N, σN).π0, σ, τ〉
Γ
; error

The last group contains only one transition rule which leads to a state that
expresses the need for the instantiation of a channel. This is an instantiation
state.

〈c, π, σ, τ〉 c 6∈ dom(τ)
Γ
; need instantiation

10

Now to test the following judgement

Γ `M : Bool

we run the TKAM on M , which mean fully evaluating the following state.

〈M, π0, ∅, ∅〉

Remark that what we mean by fully evaluating is to take a transition steps until
the state is not a continuation state.

If the result state is an error state, then the test fails. If the result state is
a value state that is T or F then the test succeeds. If it is a value state that is
a λ-abstraction then the test fails (the result has a function type, it cannot be
a boolean).

If on the other hand the result state contains an instantiation request, then
we instantiate the channel with an atomic normal form. We then run the TKAM
again on this state, act according to the result, and so on.

Note that there is no guarantee for the computation to stop, in which case
we cannot conclude on the issue of the test.

2.2 Implementation

In this section we show the correspondance between the mathematical descrip-
tion and the implementation of the TKAM . We first present the data structures
that are going to be used, then the transition function, the implementation of
the atomic normal forms and finally the testing functions

2.2.1 Data structures

The TKAM can be modeled easily by using algebraic data types. First we
define the data type Term which will be used to represent a term of the Finite
System T language.

data Term = Var VName
| Abs VName Term
| App Term Term
| T
| F
| CaseB Term Term Term
| Channel CName Type Context

Note that VName and CName are defined to be type synonyms of String.
This allows us to distinguish name of variables and name of channels.

Channels need to carry a type and a context, which are defined as follow.

data Type = Bool
| Fun Type Type

newtype Context = Context [(VName, Type)]

Now that we have terms, we need to represent the central part of the virtual
machine, namely the state. We define the type State as follow.

newtype State = State (Term , Stack , VEnv, CEnv , Int)

11

In order to have defined the state completely, we need to define the type
Stack, which is a stack of closures, represented as a list. VEnv maps variable
names to closures and CEnv maps channel names to terms. Finally, a Closure
is a couple (Term, VEnv).

newtype Stack = Stack [Closure]

newtype VEnv = VEnv [(VName, Closure)]

newtype CEnv = CEnv [(CName, Term)]

newType Closure = Closure (Term , VEnv)

Note that the Int in the type State is used to have fresh names for channels
and variables. It could be possible to add an Int in the definition of VEnv and
CEnv, but this is a design choice. Yet an other possibility would be not to carry
any Int, list all names used in a state and find one that is not used.

2.2.2 Transition function

The TKAM being defined by its transition function
Γ
;, we need to define a

function to represent it. This function will take as input a state s of the machine
and return a state t such that s ; t. We will also need the output value to
include information about the kind of the output state. The function step has
the following type signature.

s tep : : Context −> State −> Either State (Kind , State)

In the return type we use the Either data type to distinguish between con-
tinuation states and the other kinds of states on which the transition must stop
or pause. We define the type Kind as follow.

data Kind = Error
| I n s t
| Value

Before defining the step function, we can define easily the steps function,
which will take transition steps until it reach a state that is not a continuation
state.

s t ep s : : Context −> State −> (Kind , State)
s t ep s c m = case s tep c m of

Le f t m’ −> s t ep s c m’
Right r −> r

The definition of step consists of a patern-matching on the input state, ac-
cording to the definition of the transition function. First we give the rules
related to conditional operator caseB and the boolean constants.

s tep (MState (CaseB c t e , Stack s , lv , env , i)) =
l e t ct = Closure (t , l v)

c f = Closure (e , l v)
in Le f t $ MState (c , Stack (ct : c f : s) , lv , env , i)

s tep (MState (T, Stack (Closure ct : : s) , , env , i)) =
Le f t $ MState (f s t ct , Stack s , snd ct , env , i)

s tep (MState (F , Stack (: Closure c f : s) , , env , i)) =
Le f t $ MState (f s t c f , Stack s , snd cf , env , i)

12

s tep st@ (MState (T, Stack [] , , ,)) = Right (Value , s t)
s tep st@ (MState (F , Stack [] , , ,)) = Right (Value , s t)

s tep st@ (MState (T, Stack (: []) , , ,)) = Right (Error , s t)
s tep st@ (MState (F , Stack (: []) , , ,)) = Right (Error , s t)

Note that if the term is a boolean constant, the stack must have at least two
elements for the computation to continue. If it has only one element this leads
to an error, and if the stack is empty, the result is a value state.

Now we give the definition for function application and λ-abstraction.

s tep (MState (App f a , Stack s , lv , env , i)) =
l e t c l = Closure (a , l v)
in Le f t $ MState (f , Stack (c l : s) , lv , env , i)

s tep st@ (MState (Abs v e , Stack [] , , ,)) = Right (Value , s t)

s tep (MState (Abs v e , Stack (c l : s) , VEnv lv , env , i)) =
Le f t $ MState (e , Stack s , VEnv ((v , c l) : l v) , env , i)

Note that for a λ-abstraction, if the stack is empty, the result is a value
state, otherwise the computation can go on.

The definition for variables is a bit trickier. If the variable is mapped to
a closure in the environment, then the computation continues with this clo-
sure. Otherwise, we map the variable to a fresh channel (it has not yet been
instantiated).

s tep (MState (Var v , s , VEnv lv , env , i)) | v ‘ i s In ‘ l v =
l e t Closure c l = fromJust $ lookup v lv
in Le f t $ MState (f s t c l , s , snd c l , env , i)

where i s I n : : VName −> [(VName, Closure)] −> Bool
i s I n v lv = case lookup v lv o f

Nothing −> False
−> True

step ctx@ (Context c) st@ (MState (Var v , s , VEnv lv , env , i)) =
case lookup v c o f

Nothing −> Right (Error , s t)
Just tv −>

l e t ch = Channel (”ch” ++ show i) tv ctx
c l = Closure (ch , VEnv lv)

in Le f t $ MState (ch , s , VEnv ((v , c l) : l v) , env , i +1)

The two last rules are about channels. The first one is for checking if the
channel has already been instantiated, and the second one is to signal the need
for an instantiation.

s tep (MState (Channel c , s , lv , CEnv e , i)) | c ‘ i s In ‘ e =
l e t t = fromJust $ lookup c e
in Le f t $ MState (t , s , lv , CEnv e , i)

where i s I n : : CName −> [(CName,Term)] −> Bool
i s I n c l c = case lookup c l c o f

Nothing −> False
−> True

step st@ (MState (Channel c , , , ,)) =
Right (Inst , s t)

We have now a function that allows us to run the TKAM , but we still cannot
instantiate channels. To do so we need atomic normal forms.

13

2.2.3 Atomic normal forms

To compute the set of atomic normal forms of a certain type in a certain context
we need a function with the following signature.

atomicNFs : : Type −> Context −> Int −> [(Int , Term)]

Note that once again, the parameter of type Int and the first field of the
couples in the return list are to keep track of fresh names for channels and
variables.

We patern-match on the type in the definition. When the type is a function
taking an element of type t and returning an element of type t’, we take a fresh
variable v and compute the ANFs of type t’ in the previous context extended
with v : t. Finally we enclose these ANFs in an abstraction over v to obtain
the desired result.

atomicNFs (Fun t t ’) (Context c) i =
l e t var = ”var ” ++ show i

an f s = atomicNFs t ’ (Context ((var , t) : c)) (i +1)
in map (\ (i , e) −> (i , Abs var e)) an f s

The ANFs of boolean type are the basic cases true and false together with
more complex cases handled by the auxiliary function adaptVarType. For each
variable in the context, this function build an ANF based on application of
arguments to the variables and case expressions. This function will be given
latter.

atomicNFs Bool ctx@ (Context c) i =
l e t r e s t = map (adaptVarType ctx Bool i) c
in (i ,T) : (i ,F) : r e s t

We now describe the auxiliary function adaptVarType, required for the def-
inition of the previous function.

adaptVarType : : Context −> Type −> Int −> (VName, Type)
−> (Int , Term)

adaptVarType ctx tc i (v , tv) =
l e t t s = components tv

−− t s : types to apply to v to get a ground type
cn = [”ch” ++ show n | n <− [i . . (i + length t s − 1)]]
ch = zipWith (\n t −> Channel n t ctx) cn t s
−− ch : channe l s to apply to v
t = f o l d l App (Var v) ch
−− t : a pp l i c a t i on o f the channe l s to v
i ’ = i + length t s
ch1 = ”ch” ++ show i ’
ch2 = ”ch” ++ show (i ’+1)
term = CaseB t (Channel ch1 tc ctx) (Channel ch2 tc ctx)

in (i ’ + 2 , term)
where components : : Type −> [Type]

components (Fun ta tb) = ta : components tb
components = []

Once we have got all the atomic normal forms of type A in context Γ, it is
easy to generate one. To do so, we give the following function.

atomicNF : : StdGen −> Type −> Context −> Int −> (StdGen , Term , Int)
atomicNF g t c i = oneOf g $ atomicNFs t c i

14

Note that the oneOf function pick at random an element of a list. It has the
following signature.

oneOf : : StdGen −> [a] −> (StdGen , a)

The type StdGen is a random seed that allow the oneOf function to be
defined.

In order to have all the elements required for testing, we need one more
function for intantiating a channel in a state.

i n s tant i a t eChanne l : : StdGen −− Random seed
−> MState −− State
−> (StdGen , MState) −− New random seed and s t a t e

in s tant i a t eChanne l g (MState (Channel n t c , s , lv , CEnv env , i)) =
l e t (g ’ , (i ’ , anf)) = atomicNF g t c i

env ’ = CEnv ((n , anf) : env)
in (g ’ , MState (anf , s , lv , env ’ , i ’))

2.2.4 Testing function

We now give the core testing function. It has the following signature.

t e s t : : StdGen −− Random seed
−> Context −> Term −> Type −− Judgement
−> Int −− Int f o r f r e s h va r i ab l e names
−> (StdGen , Bool) −− New random seed and r e s u l t

To test a function taking a type t and returning a type t’, we test the function
applied to a fresh variable v to have type t’ in the context extended with v : t.

t e s t g (Context c) e (Fun t t ’) i =
l e t v = ” vart ” ++ show i

c ’ = (v , t) : c
e ’ = App e (Var v)

in t e s t g (Context c ’) e ’ t ’ (i +1)

If the type tested is the boolean type, then we wrap the term in an empty
state, and start looping. In the loop, we run the TKAM using the steps function,
and patern-match on the kind of the output state. If the output state is an error,
then the test fails, we return False. If the result is a value that is T or F then the
test is a success, we return True. The only other kind of value is an abstraction,
and this leads to a failure. In the case of a need for instantiation, we instantiate
the channel and loop.

t e s t g c e Bool = l e t s t = MState (e , Stack [] , VEnv [] ,
CEnv [] , 0)

in loop g s t c
where loop : : StdGen −> MState −> Context −> (StdGen , Bool)

loop g s t c =
l e t (k , st ’) = s t ep s c s t
in case k o f

Error −> (g , Fa l se)
Value −> case term st ’ o f

T −> (g , True)
F −> (g , True)
−> (g , Fa l se) −− Abstract ion

In s t −> l e t (g ’ , st ’ ’) = in s tant i a t eChanne l g st ’
in loop g ’ st ’ ’ c

15

3 Testing Judgements of PCF

Testing with PCF is very similar to testing with Finite System T, only a little
bit more complex.

Very much like we did in the previous section, we will need to do change
the transition function of the Lazy TKAM so that it can be used for testing
judgements.

We will also extend our implementation with the new features needed for
testing in the PCF language.

3.1 Using the LTKAM to test judgements

The remark that we made about testing judgements of Finite System T still
holds for PCF , the following judgements are equivalent.

Γ ` f : T1 → T2 Γ, x : T1 ` f x : T2

Any judgement can be reduced to one of the following forms.

Γ ` a : Nat Γ ` a : Bool

We use the same system as for the transition of the TKAM to classify the
transition rules in four categories.

The transition rules that lead to a continuation states are the following.
Four of them are new.

〈caseB M NT NF, π, σ, τ〉
Γ
; 〈M, (NT, σ).(NF, σ).π, σ, τ〉

〈T, (NT, σT).(NF, σF).π, σ, τ〉
Γ
; 〈NT, π, σT, τ〉

〈F, (NT, σT).(NF, σF).π, σ, τ〉
Γ
; 〈NF, π, σF, τ〉

〈M N, π, σ, τ〉 Γ
; 〈M, (N, σ).π, σ, τ〉

〈λx.M, σN .π, σ, τ〉
Γ
; 〈M, π, σ + {x 7→ σN)}, τ〉

〈x, π, σ, τ〉 x ∈ dom(σ)
Γ
; 〈σ1(x), π, σ2(x), τ〉

〈x, π, σ, τ〉 x 6∈ dom(σ)
Γ
; 〈cΓ(x)

Γ , π, σ + {x 7→ c
Γ(x)
Γ }, τ〉

〈c, π, σ, τ〉 c ∈ dom(τ)
Γ
; 〈τ(c), π, σ, τ〉

〈YM, π, σ, τ〉 Γ
; 〈M, (YM,σ).π, σ, τ〉

〈caseN M NZ NS, π, σ, τ〉
Γ
; 〈M, (NZ, σ).(NS, σ).π, σ, τ〉

〈Z, (NZ, σZ).(NS, σS).π, σ, τ〉
Γ
; 〈NZ, π, σZ, τ〉

〈SM, (NZ, σZ).(NS, σS).π, σ, τ〉
Γ
; 〈NS M, π, σS, τ〉

The transition rules leading to value states are the following. There are two

16

new rules in this group (natural number values).

〈T, π0, σ, τ〉
Γ
; value T

〈F, π0, σ, τ〉
Γ
; value F

〈λx.M, π0, σ, τ〉
Γ
; value λx.M

〈SM, π0, σ, τ〉
Γ
; value SM

〈Z, π0, σ, τ〉
Γ
; value Z

The group of transition rules leading to error states has two new members..

〈T, (N, σN).π0, σ, τ〉
Γ
; error

〈F, (N, σN).π0, σ, τ〉
Γ
; error

〈Z, (N, σN).π0, σ, τ〉
Γ
; error

〈SM, (N, σN).π0, σ, τ〉
Γ
; error

The last group of rules remains the same. There is only a single rule that
lead to an instantiation state.

〈c, π, σ, τ〉 c 6∈ dom(τ)
Γ
; need instantiation

The difference with the testing framework for Finite System T is mainly the
adding of a new testing procedure for natual numbers. The testing procedure
for judgements with the type Bool is only slightly modified.

To test judgements of the form

Γ ` a : Bool

we proceed as in the previous section. However, when it comes to value states
there are two more cases (for natural numbers). And obviously, in these two
cases, the test must fail. Everything else remains the same.

Now for testing judgements of the form

Γ ` a : Nat

we run the TKAM on a, or in other words fully evaluate the following state.

〈a, π0, ∅, ∅〉

If the result state is an error state, then the test fails. If the result state is
a value state that is T, F or a λ-abstraction then the test fails. If it is a value
state that is a Z then the test succeeds, and if it is S M then we remove the S

and resume the computation on M .
Note that S M has type Nat only if M has type Nat. That’s why the

computation needs to continue.
If the result state contains an instantiation request, then we instantiate the

channel with an atomic normal form, run the Lazy TKAM on the new state
and continue until the test fails or succeeds (or continue forever, in which case
we cannot conclude).

17

3.2 Implementation

In this section we extend the previous implementation with the features specific
to the Lazy TKAM , and extend the testing procedures.

3.2.1 Data structures

There are only two changes in the data structures used in the testing framework.
The types Type and Term must be extended with the additional constructs of
PCF and become the following.

data Term = Var VName
| Abs VName Term
| App Term Term
| Y Term
| T
| F
| CaseB Term Term Term
| Z
| S Term
| CaseN Term Term Term
| Channel CName Type Context

data Type = Bool
| Nat
| Fun Type Type

3.2.2 Transition function

We also need to add a few rules to the transition function. We need one rule
for the fixed-point recursion operator. The term is added to the stack, and the
computation resumes with the term inside the Y constructor.

s tep c (MState (Y t , Stack s , lv , env , n)) =
l e t s ’ = Closure (Y t , l v) : s
in Le f t $ MState (t , Stack s ’ , lv , env , n)

We also need rules for the case construct over natural numbers, zero and the
successor. Note that these rules are very similar to the rules for the boolean
case construct.

s tep (MState (CaseN m z s , Stack st , lv , env , n)) =
l e t cz = Closure (z , l v)

cs = Closure (s , l v)
in Le f t $ MState (m, Stack (cz : c s : s t) , lv , env , n)

The zero and successor case are almost the same as the true and false case.
The only difference is that in the successor case, the element inside the successor
construct must be applied to the corresponding element on the stack.

s tep (MState (Z , Stack (Closure cz : : s) , , env , i)) =
Le f t $ MState (f s t cz , Stack s , snd cz , env , i)

s tep (MState (S t , Stack (: Closure cs : s) , , env , i)) =
Le f t $ MState (App (f s t cs) t , Stack s , snd cs , env , i)

If the stack is empty, then we have a value state.

s tep st@ (MState (Z , Stack [] , , ,)) = Right (Value , s t)
s tep st@ (MState (S t , Stack [] , , ,)) = Right (Value , s t)

18

And if it has only one element then this is an error.

s tep st@ (MState (Z , Stack (: []) , , ,)) = Right (Error , s t)
s tep st@ (MState (S t , Stack (: []) , , ,)) = Right (Error , s t)

Every other rule remain the same.

3.2.3 Atomic normal forms

Now we need to change the function for computing the list of the atomic normal
forms completely. However it still has the same signature, and the case for the
function type remains the same too.

atomicNFs : : Type −− Type o f the ANF
−> Context −− Context
−> Int −− Next index f o r a f r e s h name
−> [(Int , Term)] −− Returns coup l e s next f r e s h name / term

atomicNFs (Fun t t ’) (Context c) i =
l e t var = ”var ” ++ show i

an f s = atomicNFs t ’ (Context ((var , t) : c)) (i +1)
in map (\ (i , e) −> (i , Abs var e)) an f s

The ANFs of boolean type are the basic cases true and false together with
more complex cases handled by the auxiliary function adaptVarType. For each
variable in the context, this function build an ANF based on application of
arguments to the variables and case expressions. This function will be given
latter.

atomicNFs Bool ctx@ (Context c) i =
l e t r e s t = map (adaptVarType ctx Bool i) c
in (i ,T) : (i ,F) : r e s t

The ANFs of natural number type are defined in a very similar way, only
the base case are different. They are zero and the successor of a channel of type
natural number type in the same context.

atomicNFs Nat ctx@ (Context c) i =
l e t r e s t = map (adaptVarType ctx Nat i) c

sch = S (Channel (”ch” ++ show i) Nat ctx)
in (i , Z) : (i +1, sch) : r e s t

We now describe the auxiliary function adaptVarType, required for the def-
inition of the previous function.

adaptVarType : : Context −> Type −> Int −> (VName, Type)
−> (Int , Term)

adaptVarType ctx tc i (v , tv) =
l e t t s = components tv

−− t s : types to apply to v to get a ground type
cn = [”ch” ++ show n | n <− [i . . (i + length t s − 1)]]
ch = zipWith (\n t −> Channel n t ctx) cn t s
−− ch : channe l s to apply to v
t = f o l d l App (Var v) ch
−− t : a pp l i c a t i on o f the channe l s to v
i ’ = i + length t s
ch1 = ”ch” ++ show i ’
ch2 = ”ch” ++ show (i ’+1)
term = case baseType tv o f −− Patern−match on the type o f t

Bool −> CaseB t (Channel ch1 tc ctx)
(Channel ch2 tc ctx)

19

Nat −> CaseN t (Channel ch1 tc ctx)
(Channel ch2 (Fun Nat tc) ctx)

in (i ’ + 2 , term)
where components : : Type −> [Type]

components (Fun ta tb) = ta : components tb
components = []
baseType : : Type −> Type
baseType (Fun t) = baseType t
baseType t = t

3.2.4 Testing function

The core testing function has one more case in its definition. The natural number
case is very similar. The only different part is in the handleing of values. Z leads
to success, and when we get S t as a value we must continue looping on the state
with the S removed. In other cases the test is a failure.

t e s t g c e Nat = l e t s t = MState (e , Stack [] , VEnv [] ,
CEnv [] , 0)

in loop g s t c
where loop : : StdGen −> MState −> Context −> (StdGen , Bool)

loop g s t c =
l e t (k , st ’) = s t ep s c s t
in case k o f

Error −> (g , Fa l se)
Value −> case term st ’ o f

Z −> (g , True)
S t −> loop g (remS st ’) c

−> (g , Fa l se) −− Bool or lambda
In s t −> l e t (g ’ , st ’ ’) = in s tant i a t eChanne l g st ’

in loop g ’ st ’ ’ c

Not that the function remS is defined as follow. It only removes the successor
which is in the term in the state.

remS : : MState −> MState
remS (MState (S t , a , b , c , d)) = MState (t , a , b , c , d)

Conclusion and future work

We presented an implementation of a testing framework based on some aspects
of the recent work of Peter Dybjer ([2]). We started from the TKAM designed
by Pierre Clairambault ([1]), and addapted it for the testing of judgements.

This new kind of testing gives other perspectives for the developement of
proof assistants since it can be used to debug proofs.

This report was first intended to contain a part about testing judgements
of dependent type theory, but adapting the TKAM for dependent types was
harder than we expected and would have required more time. Peter Dybjer
and Pierre Clairambault met recently and succeeded to adapt the TKAM to
dependent types, and we will work on its implementation soon.

20

References

[1] Clairambault, P., “Testing semantics for PCF,” .

[2] Dybjer, P., “Program Testing and Constructive Validity,” 2010.

[3] Claessen, K. and Hughes, J., “QuickCheck: a lightweight tool for random
testing of Haskell programs,” 2000.

[4] C. Runciman, M. Naylor, F. L., “Smallcheck and lazy smallcheck: automatic
exhaustive testing for small values,” 2008.

[5] Haiyan, Q., Testing and Proving in Dependent Type Theory , 2003.

21

Appendix A: Literate Haskell doc. (F. System
T)

This module contains an implementation of the TKAM adapted for testing
judgements of the form

Γ ` a : T

where a is a term of the Finite System T language.
First we give a name to the module and import a few things from the stan-

dard library.

module TestFSystemT where

import Data .Maybe (fromJust)
import System .Random (StdGen , next , newStdGen)

Appendix A.1: Finite System T

We define what a term of the language is. We use an algebraic datatype.

type VName = Str ing
type CName = Str ing
data Term = Var VName −− Var iab le

| Abs VName Term −− Lambda−ab s t r a c t i on
| App Term Term −− Appl i ca t ion
| CaseB Term Term Term −− Boolean cond i t i on
| T −− True
| F −− False
| Channel CName Type Context −− Channel

Note that channels carry a type and a context.
In order for the channels to be defined completely we need to have types and

contexts.

data Type = Bool
| Fun Type Type

de r i v i ng (Eq)

newtype Context = Context [(VName, Type)]

As it might be convenient for debuging, we define instances of Show for a
term, a type and a context.

i n s t ance Show Term where
show (Var v) = v
show (Abs v e) = ” ” ++ v ++ ” . ” ++ show e
show (App t1 t2) = ” (” ++ show t1 ++ ”) (” ++ show t2 ++ ”) ”
show (CaseB b t e) = ”caseB (” ++ show b ++ ”) (”

++ show t ++ ”) (”
++ show e ++ ”) ”

show T = ” t t ”
show F = ” f f ”
show (Channel n t c) = ” [” ++ n ++ ” : ” ++ show t

++ ” , ” ++ show c ++ ”] ”

in s t ance Show Type where
show Bool = ”B”
show (Fun s@(Fun) t) = ” (” ++ show s ++ ”)−>” ++ show t

22

show (Fun s t) = show s ++ ”−>” ++ show t

in s t ance Show Context where
show (Context c) = case c o f

[] −> ” ”
l s −> ”{” ++ showMapT l s ++ ”}”

where showMapT : : [(VName, Type)] −> St r ing
showMapT [] = ””
showMapT [(n , t)] = n ++ ” : ” ++ show t
showMapT ((n , t) : c s) = n ++ ” : ” ++ show t ++ ” , ”

++ showMapT cs

Appendix A.2: State of the TKAM

We now define what the state of the TKAM is.

newtype MState = MState (Term , Stack , VEnv, CEnv , Int)

As it is to be expected, the state contains a term, a stack, a variable envi-
ronment and a channel environment. We also add an integer to the definition,
this will be useful to get fresh variable names.

To have the definition in full we need to define what are a stack, a variable
environment and a channel environment.

newtype Stack = Stack [Closure]

newtype Closure = Closure (Term , VEnv)

newtype VEnv = VEnv [(VName, Closure)]

newtype CEnv = CEnv [(CName, Term)]

As we did before, we define instances of Show for the state of the machine.
This might be useful for debuging.

i n s t ance Show MState where
show (MState (t , s , lv , env ,)) =

” (” ++ show t ++ ” ,\n ”
++ show s ++ ” ,\n ”
++ show lv ++ ” ,\n ”
++ show env ++ ”) ”

in s t ance Show Stack where
show (Stack s) = case s o f

[] −> ” ”
c : cs −> show c ++ ” . ” ++ show cs

in s t ance Show Closure where
show (Closure (t , l v)) = ” (” ++ show t ++ ” , ”

++ show lv ++ ”) ”

in s t ance Show VEnv where
show (VEnv []) = ” ”
show (VEnv l s) = ”{” ++ showMapV l s ++ ”}”
where showMapV : : [(VName, Closure)] −> St r ing

showMapV [] = ””
showMapV [(n , c)] = n ++ ”=” ++ show c
showMapV ((n , c) : l s) = n ++ ”=” ++ show c ++ ” , ”

++ showMapV l s

23

i n s t ance Show CEnv where
show (CEnv []) = ” ”
show (CEnv l s) = ”{” ++ showMapE l s ++ ”}”
where showMapE : : [(CName, Term)] −> St r ing

showMapE [] = ””
showMapE [(n , t)] = n ++ ”=” ++ show t
showMapE ((n , t) : l s) = n ++ ”=” ++ show t ++ ” , ”

++ showMapE l s

Appendix A.3: Transition function

We will now define the transition function, according to the modifications we
did to the LTKAM for testing. We need some kind of flags to tell what kind of
state the machine is in after a transtion.

data Kind = Error −− There was an e r r o r
| I n s t −− Need f o r a channel i n s t a n t i a t i o n
| Value −− Value s t a t e

d e r i v i ng (Show)

The signature of the transition funtion will be the following.

s tep : : Context −> MState −> Either MState (Kind , MState)

We use the Either datatype in the return type in order to distinguish between
the continuation states and the final states (error, instantiation and value state).

We first give the rule for boolean condition. The computation continues with
the condition term, and the two other terms are added to the top of the stack.

s tep (MState (CaseB c t e , Stack s , lv , env , i)) =
l e t ct = Closure (t , l v)

c f = Closure (e , l v)
in Le f t $ MState (c , Stack (ct : c f : s) , lv , env , i)

Then the rules for true and false can only be applied if there are at least two
closures on the stack.

s tep (MState (T, Stack (Closure ct : : s) , , env , i)) =
Le f t $ MState (f s t ct , Stack s , snd ct , env , i)

s tep (MState (F , Stack (: Closure c f : s) , , env , i)) =
Le f t $ MState (f s t c f , Stack s , snd cf , env , i)

If there is no closure on the stack, the this is a value.

s tep st@ (MState (T, Stack [] , , ,)) = Right (Value , s t)
s tep st@ (MState (F , Stack [] , , ,)) = Right (Value , s t)

And if there is just one, then this is an error.

s tep st@ (MState (T, Stack (: []) , , ,)) = Right (Error , s t)
s tep st@ (MState (F , Stack (: []) , , ,)) = Right (Error , s t)

Now the rule for application only take the argument term to the top of the
stack and computation continue with the function.

s tep (MState (App f a , Stack s , lv , env , i)) =
l e t c l = Closure (a , l v)
in Le f t $ MState (f , Stack (c l : s) , lv , env , i)

24

In the case of a lambda-abstraction, if the stack is not empty, the the variable
in the lambda is mapped to the top of the stack in the variable environment,
and the computation keeps going with the body.

s tep (MState (Abs v e , Stack (c l : s) , VEnv lv , env , i)) =
Le f t $ MState (e , Stack s , VEnv ((v , c l) : l v) , env , i)

If the stack is empty however, then the state is a value.

s tep st@ (MState (Abs v e , Stack [] , , ,)) = Right (Value , s t)

For variables, if the variable is mapped to something in the variable envi-
ronment, the the computation resumes with this closre.

s tep (MState (Var v , s , VEnv lv , env , i)) | v ‘ i s In ‘ l v =
l e t Closure c l = fromJust $ lookup v lv −− s a f e s i n c e v i s in lv
in Le f t $ MState (f s t c l , s , snd c l , env , i)

where i s I n : : VName −> [(VName, Closure)] −> Bool
i s I n v lv = case lookup v lv o f

Nothing −> False
−> True

However, if the variable is not mapped to something, then we map it to
a new channel of the right type in the context and continue the computation
with this channel. If the context does not contain the variable then it is not
exhaustive, this leads to an error.

s tep ctx@ (Context c) st@ (MState (Var v , s , VEnv lv , env , i)) =
case lookup v c o f

Nothing −> Right (Error , s t)
Just tv −>

l e t ch = Channel (”ch” ++ show i) tv ctx
c l = Closure (ch , VEnv lv)

in Le f t $ MState (ch , s , VEnv ((v , c l) : l v) , env , i +1)

There is an alternative possibility, which is an optimization. In this case we
restrict the environment to the variables that are in scope.

s tep ctx@ (Context c) st@ (MState (Var v , s , VEnv lv , env , i)) =
case lookup v c o f

Nothing −> Right (Error , s t)
Just tv −>

l e t vinenv = map f s t l v
ch = Channel (”ch” ++ show i) tv

(Context (f i l t e r (\ (n ,) −> n ‘ elem ‘ vinenv) c))
c l = Closure (ch , VEnv lv)

in Le f t $ MState (ch , s , VEnv ((v , c l) : l v) , env , i +1)

The latter version seem to always terminate, and the first one seems to
diverge, even if it might just be that it is taking a very long time. Sometimes it
terminates as expected in about 10 seconds.

If there is a channel on top of the stack, then if it has been instantiated
already, we replace it with the corresponding term in the channel environment
(we have to do that to keep the language pure).

s tep (MState (Channel c , s , l , CEnv env , i)) | c ‘ i s In ‘ env =
l e t t = fromJust $ lookup c env −− s a f e s i n c e c i s in env
in Le f t $ MState (t , s , l , CEnv env , i)

where i s I n : : CName −> [(CName,Term)] −> Bool
i s I n c l c = case lookup c l c o f

Nothing −> False
−> True

25

If the channel has not been instantiated yet, then it must be.

s tep st@ (MState (Channel c , , , ,)) = −− c not in env
Right (Inst , s t)

We have now a full definition of the transition function. We can define a
new function that makes a full transition. Its definition is straight-forward.

s t ep s : : Context −> MState −> (Kind , MState)
s t ep s c m = case s tep c m of

Le f t m’ −> s t ep s c m’
Right r −> r

Appendix A.4: Atomic normal forms

All the ANFs of a certain type in a certain context will be computed by a
function with the following signature.

atomicNFs : : Type −− Type o f the ANF
−> Context −− Context
−> Int −− Next index f o r a f r e s h name
−> [(Int , Term)] −− Returns coup l e s next f r e s h name / term

Note that the third parameter (which is an integer) is used to obtain fresh
variable names and channel names. And similarly, in the return type, terms are
coupled with integers to give the next fresh integer if this term is selected.

We patern-match on the type in the definition. When the type is a function
taking an element of type t and returning an element of type t’, we take a fresh
variable v and compute the ANFs of type t’ in the previous context extended
with v : t. Finally we enclose these ANFs in an abstraction over v to obtain
the desired result.

atomicNFs (Fun t t ’) (Context c) i =
l e t var = ”var ” ++ show i

an f s = atomicNFs t ’ (Context ((var , t) : c)) (i +1)
in map (\ (i , e) −> (i , Abs var e)) an f s

The ANFs of boolean type are the basic cases true and false together with
more complex cases handled by the auxiliary function adaptVarType. For each
variable in the context, this function build an ANF based on application of
arguments to the variables and case expressions. This function will be given
latter.

atomicNFs Bool ctx@ (Context c) i =
l e t r e s t = map (adaptVarType ctx Bool i) c
in (i ,T) : (i ,F) : r e s t

We now describe the auxiliary function adaptVarType, required for the def-
inition of the previous function.

adaptVarType : : Context −> Type −> Int −> (VName, Type)
−> (Int , Term)

adaptVarType ctx tc i (v , tv) =
l e t t s = components tv

−− t s : types to apply to v to get a ground type
cn = [”ch” ++ show n | n <− [i . . (i + length t s − 1)]]
ch = zipWith (\n t −> Channel n t ctx) cn t s
−− ch : channe l s to apply to v

26

t = f o l d l App (Var v) ch
−− t : a pp l i c a t i on o f the channe l s to v
i ’ = i + length t s
ch1 = ”ch” ++ show i ’
ch2 = ”ch” ++ show (i ’+1)
term = CaseB t (Channel ch1 tc ctx) (Channel ch2 tc ctx)

in (i ’ + 2 , term)
where components : : Type −> [Type]

components (Fun ta tb) = ta : components tb
components = []

Now that we can compute all the ANFs of a certain type in a certain context,
we need a function to pick one at random.

atomicNF : : StdGen −− Random seed
−> Type −− Type o f the ANF
−> Context −− Context
−> Int −− Next index f o r a f r e s h name
−> (StdGen , (Int , Term)) −− New seed , f r e s h int , term

atomicNF g t c i = oneOf g $ atomicNFs t c i
where oneOf : : StdGen −> [a] −> (StdGen , a)

oneOf g l = l e t sz = length l
(i , g ’) = next g
i ’ = i ‘mod ‘ sz
i ’ ’ = i f i ’ < 0 then i ’ + sz e l s e i ’

in (g ’ , l ! ! i ’ ’)

We also give a function that instantiate a channel in a machine state. This
function can only be used if the term in the state is a channel.

i n s tant i a t eChanne l : : StdGen −− Random seed
−> MState −− State
−> (StdGen , MState) −− New random seed and s t a t e

in s tant i a t eChanne l g (MState (Channel n t c , s , lv , CEnv env , i)) =
l e t (g ’ , (i ’ , anf)) = atomicNF g t c i

env ’ = CEnv ((n , anf) : env)
in (g ’ , MState (anf , s , lv , env ’ , i ’))

Appendix A.5: Testing

We now give the core testing function. It has the following signature.

t e s t : : StdGen −− Random seed
−> Context −> Term −> Type −− Judgement
−> Int −− Int f o r f r e s h va r i ab l e names
−> (StdGen , Bool) −− New random seed and r e s u l t

To test a function taking a type t and returning a type t’, we test the function
applied to a fresh variable v to have type t’ in the context extended with v : t.

t e s t g (Context c) e (Fun t t ’) i =
l e t v = ” vart ” ++ show i

c ’ = (v , t) : c
e ’ = App e (Var v)

in t e s t g (Context c ’) e ’ t ’ (i +1)

If the type tested is the boolean type, then we wrap the term in an empty
state, and start looping. In the loop, we run the TKAM using the steps function,
and patern-match on the kind of the output state. If the output state is an error,
then the test fails, we return False. If the result is a value that is T or F then the

27

test is a success, we return True. The only other kind of value is an abstraction,
and this leads to a failure. In the case of a need for instantiation, we instantiate
the channel and loop.

t e s t g c e Bool = l e t s t = MState (e , Stack [] , VEnv [] ,
CEnv [] , 0)

in loop g s t c
where loop : : StdGen −> MState −> Context −> (StdGen , Bool)

loop g s t c =
l e t (k , st ’) = s t ep s c s t
in case k o f

Error −> (g , Fa l se)
Value −> case term st ’ o f

T −> (g , True)
F −> (g , True)
−> (g , Fa l se) −− Abstract ion

In s t −> l e t (g ’ , st ’ ’) = in s tant i a t eChanne l g st ’
in loop g ’ st ’ ’ c

In the previous function we have used an auxiliary functions that helped us
get the term inside a state.

term : : MState −> Term
term (MState (t , , , ,)) = t

Appendix A.6: Convenient functions for testing

We give a function that sequence a given number of tests. It takes as parameter
the number of tests to perform, and returns the number of successful tests before
failure.

runTests : : StdGen −− Seed f o r random genera t i on
−> Int −− Number o f d i s t i n c t t e s t s
−> Context −> Term −> Type −− Judgement
−> Int −− Nb of su c c e s s without f a i l

runTests g 0 c e t = 0
runTests g nb c e t = l e t (g ’ , r) = t e s t g c e t 0

in i f r then 1 + runTests g ’ (nb−1) c e t
e l s e 0

We also give a function that is more convenient for testing. It is wraped in
the IO monad to get access to a random seed from the environment.

quickTest : : Int −− Number o f runs
−> Context −> Term −> Type −− Judgement
−> IO ()

quickTest nb c e t = do
g <− newStdGen
l e t r = runTests g nb c e t
i f r == nb

then putStrLn $ ”Al l the ” ++ show nb ++ ” t e s t s passed ! ”
e l s e putStrLn $ ”Test number ” ++ show (r+1) ++ ” f a i l e d . . . ”

Appendix A.7: Examples

We test a first term which corresponds to a test that appears in Pierre Clairam-
bault’s notes.

28

The term is the following. It is a function that take as input a function, it
then applies T to the function, and if the result it T then it returns the function
applied to F, and otherwise T.

t1 = Abs ” f ” (CaseB (App (Var ” f ”) T) (App (Var ” f ”) F) T)

The context is the following.

c1 = Context [(” f ” , Fun Bool Bool)]

And the term is expected to have the followin type in the context.

ty1 = Fun (Fun Bool Bool) Bool

Finaly we run a test.

run1 = quickTest 1000 c1 t1 ty1

29

Appendix B: Literate Haskell doc. (PCF)

This module contains an implementation of the TKAM extended with lazy
natural numbers and adapted for testing. It can be used to test judgements of
the form

Γ ` a : T

where a is a term of the PCF language.
First we give a name to the module and import a few things from the stan-

dard library.

module TestPCF where

import Data .Maybe (fromJust)
import System .Random (StdGen , next , newStdGen)

Appendix B.1: PCF

We define what a term of the language is. We use an algebraic datatype.

type VName = Str ing
type CName = Str ing
data Term = Var VName −− Var iab le

| Abs VName Term −− Lambda−ab s t r a c t i on
| App Term Term −− Appl i ca t ion
| Y Term −− Fixed po int r e cu r s i on
| CaseB Term Term Term −− Boolean cond i t i on
| T −− True
| F −− False
| CaseN Term Term Term −− Natural cond i t i on
| Z −− Zero
| S Term −− Succes so r
| Channel CName Type Context −− Channel

Note that channels carry a type and a context.
In order for the channels to be defined completely we need to have types and

contexts.

data Type = Bool
| Nat
| Fun Type Type

de r i v i ng (Eq)

newtype Context = Context [(VName, Type)]

As it might be convenient for debuging, we define instances of Show for a
term, a type and a context.

i n s t ance Show Term where
show (Var v) = v
show (Abs v e) = ” ” ++ v ++ ” . ” ++ show e
show (App t1 t2) = ” (” ++ show t1 ++ ”) (” ++ show t2 ++ ”) ”
show (Y t) = ”Y (” ++ show t ++ ”) ”
show (CaseB b t e) = ”caseB (” ++ show b ++ ”) (”

++ show t ++ ”) (”
++ show e ++ ”) ”

show T = ” t t ”
show F = ” f f ”

30

show (CaseN n z s) = ”caseN (” ++ show n ++ ”) (”
++ show z ++ ”) (”
++ show s ++ ”) ”

show Z = ”Z”
show (S t) = ”S(” ++ show t ++ ”) ”
show (Channel n t c) = ” [” ++ n ++ ” : ” ++ show t ++ ” , ”

++ show c ++ ”] ”

in s t ance Show Type where
show Bool = ”B”
show Nat = ”N”
show (Fun s@(Fun) t) = ” (” ++ show s ++ ”)−>” ++ show t
show (Fun s t) = show s ++ ”−>” ++ show t

in s t ance Show Context where
show (Context c) = case c o f

[] −> ” ”
l s −> ”{” ++ showMapT l s ++ ”}”

where showMapT : : [(VName, Type)] −> St r ing
showMapT [] = ””
showMapT [(n , t)] = n ++ ” : ” ++ show t
showMapT ((n , t) : c s) = n ++ ” : ” ++ show t ++ ” , ”

++ showMapT cs

Appendix B.2: State of the LTKAM

We now define what the state of the LTKAM is.

newtype MState = MState (Term , Stack , VEnv, CEnv , Int)

As it is to be expected, the state contains a term, a stack, a variable envi-
ronment and a channel environment. We also add an integer to the definition,
this will be useful to get fresh variable names.

To have the definition in full we need to define what are a stack, a variable
environment and a channel environment.

newtype Stack = Stack [Closure]

newtype Closure = Closure (Term , VEnv)

newtype VEnv = VEnv [(VName, Closure)]

newtype CEnv = CEnv [(CName, Term)]

As we did before, we define instances of Show for the state of the machine.
This might be useful for debuging.

i n s t ance Show MState where
show (MState (t , s , lv , env ,)) =

” (” ++ show t ++ ” ,\n ”
++ show s ++ ” ,\n ”
++ show lv ++ ” ,\n ”
++ show env ++ ”) ”

in s t ance Show Stack where
show (Stack s) = case s o f

[] −> ” ”
c : cs −> show c ++ ” . ” ++ show cs

in s t ance Show Closure where

31

show (Closure (t , l v)) = ” (” ++ show t ++ ” , ” ++ show lv ++ ”) ”

in s t ance Show VEnv where
show (VEnv []) = ” ”
show (VEnv l s) = ”{” ++ showMapV l s ++ ”}”
where showMapV : : [(VName, Closure)] −> St r ing

showMapV [] = ””
showMapV [(n , c)] = n ++ ”=” ++ show c
showMapV ((n , c) : l s) = n ++ ”=” ++ show c ++ ” , ”

++ showMapV l s

i n s t ance Show CEnv where
show (CEnv []) = ” ”
show (CEnv l s) = ”{” ++ showMapE l s ++ ”}”
where showMapE : : [(CName, Term)] −> St r ing

showMapE [] = ””
showMapE [(n , t)] = n ++ ”=” ++ show t
showMapE ((n , t) : l s) = n ++ ”=” ++ show t ++ ” , ”

++ showMapE l s

Appendix B.3: Transition function

We will now define the transition function, according to the modifications we
did to the LTKAM for testing. We need some kind of flags to tell what kind of
state the machine is in after a transtion.

data Kind = Error −− There was an e r r o r
| I n s t −− Need f o r a channel i n s t a n t i a t i o n
| Value −− Value s t a t e

d e r i v i ng (Show)

The signature of the transition funtion will be the following.

s tep : : Context −> MState −> Either MState (Kind , MState)

We use the Either datatype in the return type in order to distinguish between
the continuation states and the final states (error, instantiation and value state).

We first give the rule for boolean condition. The computation continues with
the condition term, and the two other terms are added to the top of the stack.

s tep (MState (CaseB c t e , Stack s , lv , env , i)) =
l e t ct = Closure (t , l v)

c f = Closure (e , l v)
in Le f t $ MState (c , Stack (ct : c f : s) , lv , env , i)

Then the rules for true and false can only be applied if there are at least two
closures on the stack.

s tep (MState (T, Stack (Closure ct : : s) , , env , i)) =
Le f t $ MState (f s t ct , Stack s , snd ct , env , i)

s tep (MState (F , Stack (: Closure c f : s) , , env , i)) =
Le f t $ MState (f s t c f , Stack s , snd cf , env , i)

If there is no closure on the stack, the this is a value.

s tep st@ (MState (T, Stack [] , , ,)) = Right (Value , s t)
s tep st@ (MState (F , Stack [] , , ,)) = Right (Value , s t)

And if there is just one, then this is an error.

32

s tep st@ (MState (T, Stack (: []) , , ,)) = Right (Error , s t)
s tep st@ (MState (F , Stack (: []) , , ,)) = Right (Error , s t)

We now switch to the case construct over natural numbers. This is a very
similar case.

s tep (MState (CaseN m z s , Stack st , lv , env , n)) =
l e t cz = Closure (z , l v)

cs = Closure (s , l v)
in Le f t $ MState (m, Stack (cz : c s : s t) , lv , env , n)

The zero and successor case are almost the same as the true and false case.
The only difference is that in the successor case, the element inside the successor
construct must be applied to the corresponding element on the stack.

s tep (MState (Z , Stack (Closure cz : : s) , , env , i)) =
Le f t $ MState (f s t cz , Stack s , snd cz , env , i)

s tep (MState (S t , Stack (: Closure cs : s) , , env , i)) =
Le f t $ MState (App (f s t cs) t , Stack s , snd cs , env , i)

If the stack is empty, then we have a value state.

s tep st@ (MState (Z , Stack [] , , ,)) = Right (Value , s t)
s tep st@ (MState (S t , Stack [] , , ,)) = Right (Value , s t)

And if it has only one element then this is an error.

s tep st@ (MState (Z , Stack (: []) , , ,)) = Right (Error , s t)
s tep st@ (MState (S t , Stack (: []) , , ,)) = Right (Error , s t)

Now the rule for application only take the argument term to the top of the
stack and computation continue with the function.

s tep (MState (App f a , Stack s , lv , env , i)) =
l e t c l = Closure (a , l v)
in Le f t $ MState (f , Stack (c l : s) , lv , env , i)

In the case of a lambda-abstraction, if the stack is not empty, the the variable
in the lambda is mapped to the top of the stack in the variable environment,
and the computation keeps going with the body.

s tep (MState (Abs v e , Stack (c l : s) , VEnv lv , env , i)) =
Le f t $ MState (e , Stack s , VEnv ((v , c l) : l v) , env , i)

If the stack is empty however, then the state is a value.

s tep st@ (MState (Abs v e , Stack [] , , ,)) = Right (Value , s t)

In the case of the Y combinator, the term is added to the stack, and the
computation resumes with the term inside the Y constructor.

s tep c (MState (Y t , Stack s , lv , env , n)) =
l e t s ’ = Closure (Y t , l v) : s
in Le f t $ MState (t , Stack s ’ , lv , env , n)

For variables, if the variable is mapped to something in the variable envi-
ronment, the the computation resumes with this closre.

33

s tep (MState (Var v , s , VEnv lv , env , i)) | v ‘ i s In ‘ l v =
l e t Closure c l = fromJust $ lookup v lv −− s a f e s i n c e v i s in lv
in Le f t $ MState (f s t c l , s , snd c l , env , i)

where i s I n : : VName −> [(VName, Closure)] −> Bool
i s I n v lv = case lookup v lv o f

Nothing −> False
−> True

However, if the variable is not mapped to something, then we map it to
a new channel of the right type in the context and continue the computation
with this channel. If the context does not contain the variable then it is not
exhaustive, this leads to an error.

s tep ctx@ (Context c) st@ (MState (Var v , s , VEnv lv , env , i)) =
case lookup v c o f

Nothing −> Right (Error , s t)
Just tv −>

l e t ch = Channel (”ch” ++ show i) tv ctx
c l = Closure (ch , VEnv lv)

in Le f t $ MState (ch , s , VEnv ((v , c l) : l v) , env , i +1)

There is an alternative possibility, which is an optimization. In this case we
restrict the environment to the variables that are in scope.

s tep ctx@ (Context c) st@ (MState (Var v , s , VEnv lv , env , i)) =
case lookup v c o f

Nothing −> Right (Error , s t)
Just tv −>

l e t vs = map f s t l v
ch = Channel (”ch” ++ show i) tv

(Context (f i l t e r (\ (n ,) −> n ‘ elem ‘ vs) c))
c l = Closure (ch , VEnv lv)

in Le f t $ MState (ch , s , VEnv ((v , c l) : l v) , env , i +1)

The latter version seem to always terminate, and the first one seems to
diverge, even if it might just be that it is taking a very long time. Sometimes it
terminates as expected in about 10 seconds.

If there is a channel on top of the stack, then if it has been instantiated
already, we replace it with the corresponding term in the channel environment
(we have to do that to keep the language pure).

s tep (MState (Channel c , s , l , CEnv env , i)) | c ‘ i s In ‘ env =
l e t t = fromJust $ lookup c env −− s a f e s i n c e c i s in env
in Le f t $ MState (t , s , l , CEnv env , i)

where i s I n : : CName −> [(CName,Term)] −> Bool
i s I n c l c = case lookup c l c o f

Nothing −> False
−> True

If the channel has not been instantiated yet, then it must be.

s tep st@ (MState (Channel c , , , ,)) = −− c not in env
Right (Inst , s t)

We have now a full definition of the transition function. We can define a
new function that makes a full transition. Its definition is straight-forward.

s t ep s : : Context −> MState −> (Kind , MState)
s t ep s c m = case s tep c m of

Le f t m’ −> s t ep s c m’
Right r −> r

34

Appendix B.4: Atomic normal forms

All the ANFs of a certain type in a certain context will be computed by a
function with the following signature.

atomicNFs : : Type −− Type o f the ANF
−> Context −− Context
−> Int −− Next index f o r a f r e s h name
−> [(Int , Term)] −− Returns coup l e s next f r e s h name / term

Note that the third parameter (which is an integer) is used to obtain fresh
variable names and channel names. And similarly, in the return type, terms are
coupled with integers to give the next fresh integer if this term is selected.

We patern-match on the type in the definition. When the type is a function
taking an element of type t and returning an element of type t’, we take a fresh
variable v and compute the ANFs of type t’ in the previous context extended
with v : t. Finally we enclose these ANFs in an abstraction over v to obtain
the desired result.

atomicNFs (Fun t t ’) (Context c) i =
l e t var = ”var ” ++ show i

an f s = atomicNFs t ’ (Context ((var , t) : c)) (i +1)
in map (\ (i , e) −> (i , Abs var e)) an f s

The ANFs of boolean type are the basic cases true and false together with
more complex cases handled by the auxiliary function adaptVarType. For each
variable in the context, this function build an ANF based on application of
arguments to the variables and case expressions. This function will be given
latter.

atomicNFs Bool ctx@ (Context c) i =
l e t r e s t = map (adaptVarType ctx Bool i) c
in (i ,T) : (i ,F) : r e s t

The ANFs of natural number type are defined in a very similar way, only
the base case are different. They are zero and the successor of a channel of type
natural number type in the same context.

atomicNFs Nat ctx@ (Context c) i =
l e t r e s t = map (adaptVarType ctx Nat i) c

sch = S (Channel (”ch” ++ show i) Nat ctx)
in (i , Z) : (i +1, sch) : r e s t

We now describe the auxiliary function adaptVarType, required for the def-
inition of the previous function.

adaptVarType : : Context −> Type −> Int −> (VName, Type)
−> (Int , Term)

adaptVarType ctx tc i (v , tv) =
l e t t s = components tv

−− t s : types to apply to v to get a ground type
cn = [”ch” ++ show n | n <− [i . . (i + length t s − 1)]]
ch = zipWith (\n t −> Channel n t ctx) cn t s
−− ch : channe l s to apply to v
t = f o l d l App (Var v) ch
−− t : a pp l i c a t i on o f the channe l s to v
i ’ = i + length t s
ch1 = ”ch” ++ show i ’
ch2 = ”ch” ++ show (i ’+1)

35

term = case baseType tv o f −− Patern−match on the type o f t
Bool −> CaseB t (Channel ch1 tc ctx)

(Channel ch2 tc ctx)
Nat −> CaseN t (Channel ch1 tc ctx)

(Channel ch2 (Fun Nat tc) ctx)
in (i ’ + 2 , term)

where components : : Type −> [Type]
components (Fun ta tb) = ta : components tb
components = []
baseType : : Type −> Type
baseType (Fun t) = baseType t
baseType t = t

Now that we can compute all the ANFs of a certain type in a certain context,
we need a function to pick one at random.

atomicNF : : StdGen −− Random seed
−> Type −− Type o f the ANF
−> Context −− Context
−> Int −− Next index f o r a f r e s h name
−> (StdGen , (Int , Term)) −− New seed , f r e s h name , term

atomicNF g t c i = oneOf g $ atomicNFs t c i
where oneOf : : StdGen −> [a] −> (StdGen , a)

oneOf g l = l e t sz = length l
(i , g ’) = next g
i ’ = i ‘mod ‘ sz
i ’ ’ = i f i ’ < 0 then i ’ + sz e l s e i ’

in (g ’ , l ! ! i ’ ’)

We also give a function that instantiate a channel in a machine state. This
function can only be used if the term in the state is a channel.

i n s tant i a t eChanne l : : StdGen −− Random seed
−> MState −− State
−> (StdGen , MState) −− New random and s t a t e

in s tant i a t eChanne l g (MState (Channel n t c , s , lv , CEnv env , i)) =
l e t (g ’ , (i ’ , anf)) = atomicNF g t c i

env ’ = CEnv ((n , anf) : env)
in (g ’ , MState (anf , s , lv , env ’ , i ’))

Appendix B.5: Testing

We now give the core testing function. It has the following signature.

t e s t : : StdGen −− Random seed
−> Context −> Term −> Type −− Judgement
−> Int −− Int f o r f r e s h va r i ab l e names
−> (StdGen , Bool) −− New random seed and r e s u l t

To test a function taking a type t and returning a type t’, we test the function
applied to a fresh variable v to have type t’ in the context extended with v : t.

t e s t g (Context c) e (Fun t t ’) i =
l e t v = ” vart ” ++ show i

c ’ = (v , t) : c
e ’ = App e (Var v)

in t e s t g (Context c ’) e ’ t ’ (i +1)

If the type tested is the boolean type, then we wrap the term in an empty
state, and start looping. In the loop, we run the TKAM using the steps function,

36

and patern-match on the kind of the output state. If the output state is an error,
then the test fails, we return False. If the result is a value that is T or F then
the test is a success, we return True. Other kind of values are functions and
natural numbers. This is a failure. In the case of a neef for instantiation, we
instantiate the channel and loop.

t e s t g c e Bool = l e t s t = MState (e , Stack [] , VEnv [] ,
CEnv [] , 0)

in loop g s t c
where loop : : StdGen −> MState −> Context −> (StdGen , Bool)

loop g s t c =
l e t (k , st ’) = s t ep s c s t
in case k o f

Error −> (g , Fa l se)
Value −> case term st ’ o f

T −> (g , True)
F −> (g , True)
−> (g , Fa l se) −− Nat or lambda

In s t −> l e t (g ’ , st ’ ’) = in s tant i a t eChanne l g st ’
in loop g ’ st ’ ’ c

Finally, the natural number case is very similar. The only different part is
in the handleing of values. Z leads to success, and when we get S t as a value
we must continue looping on the state with the S removed. In other cases the
test is a failure.

t e s t g c e Nat = l e t s t = MState (e , Stack [] , VEnv [] ,
CEnv [] , 0)

in loop g s t c
where loop : : StdGen −> MState −> Context −> (StdGen , Bool)

loop g s t c =
l e t (k , st ’) = s t ep s c s t
in case k o f

Error −> (g , Fa l se)
Value −> case term st ’ o f

Z −> (g , True)
S t −> loop g (remS st ’) c

−> (g , Fa l se) −− Bool or lambda
In s t −> l e t (g ’ , st ’ ’) = in s tant i a t eChanne l g st ’

in loop g ’ st ’ ’ c

In the previous function we have used some auxiliary functions that helped
us get the term inside a state or remove the S on the term of a state.

term : : MState −> Term
term (MState (t , , , ,)) = t

remS : : MState −> MState
remS (MState (S t , a , b , c , d)) = MState (t , a , b , c , d)

Appendix B.6: Convenient functions for testing

We give a function that sequence a given number of tests. It takes as parameter
the number of tests to perform, and returns the number of successful tests before
failure.

runTests : : StdGen −− Random seed
−> Int −− Number o f t e s t s to run
−> Context −> Term −> Type −− Judgement

37

−> Int −− Nb of su c c e s s
runTests g 0 c e t = 0
runTests g nb c e t = l e t (g ’ , r) = t e s t g c e t 0

in i f r then 1 + runTests g ’ (nb−1) c e t
e l s e 0

We also give a function that is more convenient for testing. It is wraped in
the IO monad to get access to a random seed from the environment.

quickTest : : Int −− Number o f runs
−> Context −> Term −> Type −− Judgement
−> IO ()

quickTest nb c e t = do
g <− newStdGen
l e t r = runTests g nb c e t
i f r == nb

then putStrLn $ ”Al l the ” ++ show nb ++ ” t e s t s passed ! ”
e l s e putStrLn $ ”Test number ” ++ show (r+1) ++ ” f a i l e d . . . ”

Appendix B.7: Examples

We gave everything that is needed for testing, and now we are going to make
some tests. But before we give some convenient functions that allow some
shortcuts during the creation of a term.

toNat : : Int −> Term
toNat n | n < 0 = e r r o r ”No negat ive i n t e g e r s . . . ”
toNat 0 = Z
toNat n = S (toNat (n−1))

fromNat : : Term −> Int
fromNat Z = 0
fromNat (S t) = 1 + fromNat t
fromNat = e r r o r ”Not a natura l number . . . ”

We test a first term which correspionds to a function taking as input a
natural number and returning true if it is zero and false otherwise (this is an
implementation of the isZ function).

t1 = Abs ”n” (CaseN (Var ”n”) T (Abs ”x” F))

We test this term in the following context.

c1 = Context [(”n” , Nat) , (”x” , Nat)]

The type we want to test is the following.

ty1 = Fun Nat Bool

We can do a test run as follow.

run1 = quickTest 1000 c1 t1 ty1

Here is an other test example. The term corresponds to a function taking a
function f as input and returning true if f 0 is equal to 0 and false otherwise.

t2 = Abs ” f ” (CaseN (App (Var ” f ”) Z) T (Abs ”x” F))
c2 = Context [(” f ” , Fun Nat Nat) , (”x” , Nat)]
ty2 = Fun (Fun Nat Nat) Bool

run2 = quickTest 1000 c2 t2 ty2

38

The last test is the one that appears in Pierre Clairambault’s notes.

t3 = Abs ” f ” (CaseB (App (Var ” f ”) T) (App (Var ” f ”) F) T)
c3 = Context [(” f ” , Fun Bool Bool)]
ty3 = Fun (Fun Bool Bool) Bool

run3 = quickTest 1000 c3 t3 ty3

39

Appendix C: Résumé et mots clés

Dans ce rapport nous étudions une nouvelle notion de test pour la théorie des
types. Nous commencons par décrire la Krivine Abstract Machine (KAM) qui
est une machine virtuelle permettant d’évaluer des termes du λ-calcul. Nous
présentons ensuite la Testing KAM qui est une version modifiée de la KAM que
Pierre Clairambault a décrite dans des notes ([1]).

Nous utilisons ensuite deux versions de la TKAM, la première restreinte au
language Finite System T et la seconde dérivée de la version originale laquelle
nous ajoutons des entiers naturels lazy.

Les machines virtuelles sont ensuite utilisées comme la partie centrale d’une
procedure de test pour le typage de termes.

Ce travail est une implémentation de certains aspects d’un manuel de test
présenté par Peter Dybjer dans son papier Program Testing and Constructive
Validity [2].

Mots clés: instantiation / generation paresseuse, fonction de transition, test
de typage, implémentation.

40

