
Master of Science in Informatics at Grenoble
Master Mathématiques Informatique - spécialité Informatique

option Parallel, Distributed and Embedded Systems

A Classical Realizability Interpretation
of Judgement Testing

Rodolphe Lepigre

19/06/2013

Research project performed at the LAMA, Université de Savoie

Under the direction of:
Pierre Hyvernat, LAMA, Université de Savoie
Christophe Raffalli, LAMA, Université de Savoie

Defended before a jury composed of:
Prof. Marie-Christine Fauvet, LIG, UJF

Prof. Olivier Gruber, INRIA, UJF
Prof. Martin Heusse, LIG, ENSIMAG
Prof. Arnaud Legrand, LIG, UJF
Prof. Alexandre Miquel, ENS Lyon

Prof. Noël de Palma, IMAG, UJF (president)
1June 2013

Abstract
A notion of test for intuitionistic type theory has recently been introduced
by Peter Dybjer and his collaborators []. It is meant to be
the foundation for automatic testing tools that could be implemented in
proof assistants such as Coq or Agda. Such tools would provide a way to
test, at any time during the construction of a proof, if the current goal can
be completed in the context. The failure of such a test would mean that the
goal is impossible to prove, and its success would corroborate the partial
result.

In this report, we investigate the possibility of extending the testing
procedure to classical systems. We propose an interpretation of the testing
procedure in terms of Krivine's classical realizability. Finally we show that
the notion of test is correct, in the sense that a judgement is valid if and
only if it passes every possible test.

Résumé
Peter Dybjer et ses collaborateurs ont introduit une notion de test pour la
théorie des types intuitionniste []. Le but de ces récents
travaux est de servir de fondation à des outils de test automatiques qui
pourraient être implémentés, à terme, dans des assistants de preuve tels
que Coq ou encore Agda. De tels outils permettraient aux utilisateurs
de tester une preuve en cours de construction, et ainsi, soit réfuter leur
résultat avec un échec, soit le corroborer avec des résultats positifs. Ici,
faire un test signifie vérifier si le but courant peut être complété ou non,
dans le contexte.

Dans ce rapport, nous explorons les possibilités d'extension de cet
outil de test aux systèmes classiques. En outre, une interprétation du
test en terme de la réalisabilité classique de Krivine est proposée. Nous
montrons également que le système de test est correct, ce qui signifie
qu'un jugement est valide si et seulement passe tout les tests.

2

Peter Dybjer 2010

Peter Dybjer 2010

3

5.1 Notion of test 35

5 Testing procedure 35

4.3 Reduction of CTH and plugs 31

4.2 Type of a hole and adequation lemma 30

4.1 Contextually typed holes and their substitution 29

4 Realizability and holes 29

3.2 Realizability 25

3.1 Environment machine 23

3 An explicit environment Krivine machine 23

2.5 Krivine's classical realizability 21

2.4 Extension to classical systems 19

2.3 Curry-Howard Isomorphism 18

2.2 λ-calculus and type theory 13

2.1 Constructive logic 11

2 Prerequisites 11

1.4 Contents of this report 9

1.3 A brief history of judgement testing, motivations 8

1.2 Proof assistants 7

1.1 Automatic testing tools 5

1 Introduction 5

Table of contents

4

6.4 Disclaimer 40

6.3 Acknowledgements 40

6.2 PhD Thesis project 39

6.1 Main contribution 39

6 Conclusion and future work 39

5.3 Examples 37

5.2 Preprocessing 36

For several decades, our world has been governed by computer programs. We entrust
them with many business-critical tasks, and sometimes even our lives. Reasonable code-
writers have come to cherish testing, as it is particularly helpful for ensuring that a
program behaves correctly. However, testing can be a tedious task, which is why it is
often neglected. Automatic testing tools have been designed to overcome this problem.

1.1 Automatic testing tools

There are a number of frameworks that allow testing with automatic input generation
such as QuickCheck [] or SmallCheck [

] for the programming language Haskell. These
tools allow the user to test predicates over the application of generated input to functions,
the main difference between QuickCheck and SmallCheck being the method of generating
input data. The former uses random generation while the latter generates input in a
systematic way.

1.1.1 Specification-based testing

In order to illustrate the possibilities offered by such tools, let us consider the following
well-known example of a Haskell program implementing a sorting algorithm (quick-sort).

 qsort :: [Int] -> [Int]

 qsort [] = []

 qsort (x:xs) = qsort ltx ++ [x] ++ qsort mtx

 where ltx = filter (< x) xs

 mtx = filter (> x) xs

There are two properties that we can expect from a sorting function:
the output list should contain exactly the same elements as the input list,
and the output list should be ordered.

5

Matthew Naylor, Fredrik Lindblad 2008
Colin Runciman,Koen Claessen, John Hughes 2000

Introduction1

These properties can be formulated as predicates over the input data of the sorting
function. Finally, one can run arbitrary tests on the predicates by calling the function
quickCheck.

 propEqElem :: [Int] -> Bool

 propEqElem l = bagEq l (qsort l)

 where bagEq :: [Int] -> [Int] -> Bool

 bagEq x y = null (x \\ y) && null (y \\ x)

 propOrdered :: [Int] -> Bool

 propOrdered l = ordered (qsort l)

 where ordered (x:y:xs) = x <= y && ordered (y:xs)

 ordered _ = True

 test :: IO ()

 test = do quickCheck propEqElem

 quickCheck propOrdered

When the test function is run, we get the following message, telling us that the seventh
test on the first predicate failed, while every test passed for the second predicate.

 > test

 **** Failed! Falsifiable (after 7 tests and 2 shrinks): [2,2]

 +++ OK, passed 100 tests.

We now know that our implementation of the sorting function is not correct with respect
to the first property that we stated, i.e. it may happen that the output list does not
contains exactly the same element as the input list.

1.1.2 Debugging by testing

In the previous section, we showed that testing was a good way to check if a program
behaves according to its specification. Another use of testing, although closely related,
is debugging. When a program, function or procedure does not behave as expected,
a programmer can often isolate the problem by running tests with carefully-chosen input
data, and by observing the external behaviour of the program, function or procedure.

6

Let us go back to our example with the sorting function. Upon test failure, the input
data is shrunk by QuickCheck, and a minimal example of an input leading to a test failure
is returned. In our case, the minimum failing instance is the list [2,2]. We can easily
deduce that the problem arises when an element appears twice in the list, and isolate
the problem: elements equal to the pivot are filtered out, and simply forgotten. Once the
problem is corrected, every test passes.

 qsort :: [Int] -> [Int]

 qsort [] = []

 qsort (x:xs) = qsort ltx ++ [x] ++ qsort mtx

 where ltx = filter (< x) xs

 mtx = filter (>= x) xs -- forgot = here

 > test

 +++ OK, passed 100 tests.

 +++ OK, passed 100 tests.

1.2 Proof assistants

As was wisely pointed out by Dijkstra, testing can be a very good way to find bugs, but
it cannot be used to show their absence. In fact, this is not true for functions having
a finite domain, since one can exhaustively try every possible input (this was the main
motivation for SmallCheck []).
However, such functions are rather rare in real-life settings where integers, lists and trees
are manipulated all the time. One can also think of higher-order types such as functions:
ℕ → bbB is not even countable. When considering such common examples, Dijkstra's
remark is fully realised. However, we would like to be able to reason about programs or
functions that have an infinite domain as well.

Proof assistants are programs designed to lead users through the construction of
formal proofs. One of the main uses of such tools is program proving, i.e. proving that
a program behaves according to its specification. Fortunately, this technique provides a
way to reason about any program, including those having an infinite domain.

A lot of progress has been made with proof assistants such as Coq or Agda. They
are able to build a formal proof with less and less help from the human user, and
can be used to prove that a program meets its specification. However, even a program

7

Colin Runciman, Matthew Naylor, Fredrik Lindblad 2008

that has been proved should not be trusted entirely. Indeed, as Peter Dybjer and many
others before him highlighted, many things can go wrong. For instance, it could be
that the specification does not capture the desired behaviour, or that there is a bug in
the implementation of the proof-assistant. In any case, it is always safer to run some
tests before putting programs into production.

Building a formal proof with a proof assistant can be very tricky, and it is likely
that many programming mistakes will be made during the process. Many such bugs
will be discovered by the proof assistant, but some others might be hard to track.
Moreover, there are very few tools and techniques that can be used to debug proofs and
specifications.

This led Peter Dybjer and his collaborators to introduce a notion of test for intui-
tionistic type theory [] a few years ago. It is analogous to the notion of
test discussed in the previous section, in the sense that it can be used for debugging. This
new notion of test affects the testing of judgements in intuitionistic type theory, and it
is meant to be the foundation for automatic testing tools that could be implemented in
proof assistants. Such tools would provide a way to test, at any time during the construc-
tion of a proof, if the current goal can be completed in the context. The success of a test
would corroborate the correctness of the partial proof, but the failure of a test would
convey the impossibility for the proof to be completed.

1.3 A brief history of judgement testing, motivations

The notion of judgement testing was first introduced by Peter Dybjer, who related
program testing to Martin-Löf's meaning explanation for intuitionistic type theory [

]. In his paper, the four forms of judgement present in Martin-Löf's type
theory are considered to be hypothetical and can be corroborated or refuted by testing.

Pierre Clairambault then focused only on typing judgements and initiated the design
of a testing procedure based on Krivine's Abstract Machine for the PCF language [

]. As part of a previous internship under the direction of Peter Dybjer, the
current author refined the design and implemented the testing procedure [

].
For their part, Peter Dybjer and Pierre Clairambault are currently working on the

design of a testing procedure that would work in Martin Löf's dependent type theory
[]. Their aim is to implement in full the testing
manual for Martin Löf's dependent type theory presented by Peter Dybjer in his paper
Program Testing and Constructive Validity [].

8

Peter Dybjer 2010

Peter Dybjer, Pierre Clairambault 2012

Lepigre 2012
Rodolphe

Clairambault
Pierre

Dybjer 2010
Peter

Peter Dybjer 2010

During a presentation at the LAMA (Université de Savoie) of the author's previous
research [], it was noticed that, as the central part of the procedure
relies on Krivine's Abstract Machine, it would be logical to relate the notion of test
in type theory to Krivine's classical realizability, which led to the current work. The
interest of this work is twofold: it will give another interpretation of the testing of typing
judgements and relate it to realizability, and it will also extend the notion of test to
classical systems through the call/cc instruction. Moreover, the soundness of the testing
procedure will be expressed in terms of the adequacy of the realizability system.

1.4 Contents of this report

In chapter we provide the necessary background for this work. This report is intended
to be self-contained, therefore we will start with the very basics of logic, the λ-calculus,
type theory and classical realizability. Readers familiar with these are advised to skim
through this chapter all the same in order to familiarize themselves with our notations
(even though they are generally standard).

The real content of this work and our main contributions are contained in chapters ,
and . In chapter we present a Krivine's abstract machine where environments are left

explicit (i.e. substitutions are not applied directly). We prove an adequation lemma for
this system.

In chapter we introduce contextually typed holes (CTH) which will represent holes
to be filled in a proof. The realizability model of chapter is extended to contain a new
typing rule related to CTH. The resulting adequation lemma gives us a correction result
saying that if a judgement is valid, then the execution cannot go wrong. The contra-
positive tells us that if but a single test fails, then the judgement is not valid.

Finally, in chapter , we define the testing procedure. In particular, we show what
preprocessing is required before being able to test a judgement. We also consider some
examples.

9

5

3
4

354
3

2

Rodolphe Lepigre 2012

10

In this chapter we provide the background for a reader not familiar with type theory and
classical realizability. We also introduce the notations that we will use throughout this
thesis. Readers familiar with logic, type theory and classical realizability can safely skip
this part and go straight to chapter . However, it might be a good idea to skim through
this part, if only to become familiar with our notations.

2.1 Constructive logic

{ } Let A = A, B, C… be a countable set of atomic formulae, and⊥ be an atomic formula
representing the absurdity. LetF be the set of all formulae. It is defined to be the smallest
set such that A ⊂ F, ⊥ ∈ F and if A, B ∈ F, then A → B ∈ F. The formula A → B is
to be read "A implies B". It states that if A is true, then B is also true. Other logical
connectives can be defined in terms of the implication connective:

logical negation ¬A can be defined as A → ⊥,() disjunction A ∨ B can be defined as A → B → B,(()) conjunction A ∧ B can be defined as A → B → ⊥ → ⊥.
As formulae are often written linearly (and not as trees), we use parentheses to remove
any ambiguity. However we will adopt the usual conventions in order to lighten the
notations:

The implication arrow → is associative to the right, which means that the formula() A → B → C should be understood as A → B → C .
The implication symbol → binds stronger than the conjunction symbol ∧ and the
disjunction symbol ∨ , which in turn bind stronger than the negation symbol ¬.() ((()) (The formula ¬A ∨ B ∧ ¬C → D should be understood as ¬A ∨ B ∧ ¬)) C → D.

Definition 2.1.1 Given a countable set of atomic formulae A, the set of well-formed
formulae F is generated by the following BNF grammar:

F \bnfeq A | ⊥ | F → F A ∈ A
11

3

Prerequisites2

Proof-trees are constructed using logical rules. The basic syntactic unit used to build
proofs are called sequents, and are denoted Γ ⊢ A where Γ is a set of formulae to be
interpreted as a set of hypotheses, and A is a formula to be interpreted as the conclusion.
We will use the Greek capital letters Γ, Δ and Σ to range over sets of formulae.

Definition 2.1.2 A sequent is a couple denoted Γ ⊢ A where Γ ⊂ F is a finite set of
formulae (hypotheses), and A ∈ F is a formula (conclusion).

{ } { } In order to lighten the notations, if Γ = A , …, A and Δ = A , …, A , A are sets1 n 1 n
of formulae, and if C is a formula, then

writing Γ ⊢ C is equivalent to writing A , …, A ⊢ C, and1 n
writing Δ ⊢ C is equivalent to writing Γ, A ⊢ C.

Deduction rules consist of a finite set (potentially empty) of sequents called premises,
and one sequent called conclusion separated by a horizontal bar at the right of which is
usually written the name of the rule.

{ } Definition 2.1.3 A deduction rule has the following form, where S , …, S is a finite set1 n
of sequents forming premises, S is a sequent forming the conclusion, and ν is the name
of the rule. S … S1 n νS
We will now give the deduction rules of the system. The first rule has no premise and
simply states that when a formula is among the hypotheses, then we can prove it. This
rule is named axiom.

axΓ, A ⊢ A
There are two rules related to the implication connective →. The first one is an

introduction rule, and the second one is an elimination rule. The introduction rule
has in its conclusion an additional occurrence of the connective, while the elimination
rule contain, in one of its premises, an occurrence of the connective which will disap-
pear in the conclusion.

Γ, A ⊢ B Γ ⊢ A → B Γ ⊢ A→ →i eΓ ⊢ A → B Γ ⊢ B
The name of these rules are, respectively, arrow introduction and arrow elimination (com-
monly referred to as modus ponens). The first rule states that when a formula B holds

12

{ } under assumptions Γ ∪ A , then it is true that A implies B under assumptions Γ. The
second rule is quite straight-forward: if under some assumptions we know that A impliesB, and under the same assumptions we know that A holds, then we can deduce that B
holds as well. () () As an example, we give a proof of the formula A → B → ¬B → ¬A , which
can be seen as a rule for doing a proof by contraposition. We will use the letter Γ as a{ } shorthand for A → B, ¬B , A .

ax axΓ ⊢ A → B Γ ⊢ A
ax →eA → B, ¬B , A ⊢ B → ⊥ A → B, ¬B , A ⊢ B→eA → B, ¬B , A ⊢ ⊥→iA → B, ¬B ⊢ ¬A →iA → B ⊢ ¬B → ¬A →i() () ⊢ A → B → ¬B → ¬A

2.2 λ-calculus and type theory

In this section, we will introduce the λ-calculus, which is a very simple language which
was designed in the Thirties by Alonzo Church. We will also present a type system which
will form the simply-typed λ-calculus.
2.2.1 λ-calculus
The λ-calculus consists of only three kinds of terms: variables coming from a countable{ } set Λ = x, y , z… , λ-abstractions which allow the construction of functions, and func-x
tion applications. The language Λ of the λ-calculus is generated by the following BNF
grammar: () t \bnfeq x | λx.t | t t x ∈ Λx

() Note that we use Krivine's notation for function application: we write f a and not() fa for the application of function f to the argument a. Let us consider the following
examples of λ-terms, which represent simple mathematical objects:
1. λx.x and λy.y both represent the identity function. They take one parameter as input,
and return it. The only difference between these two functions is the name used for
the argument variable.(()) 2. λx.λy.x a b is the application of a function to two arguments, a and b. The
function simply returns the first of its two arguments, and discards the second.

13

() () 3. λg.λf.λx. g f x is a function taking two functions, f and g, as input, and returning
the function g∘f.

A λ-abstraction is a binding term. The variable which is abstracted on can be used in the
body of the abstraction to denote the argument of the function. An occurrence of a
variable x can either be free, which means that it does not appear in the body t of aλ-abstraction λx.t, or it can be bound. A bound variable can appear in the body of several
nested λ-abstractions, however, the one it is bound to is always the first encountered() when going up the syntactic tree of the term. For example, in the term λx. λx.x x, the
first occurrence of the variable term x is bound to the second λ-abstraction, and the
second occurrence of x is bound to the first λ-abstraction.

For any term t, we can define the set of variables that appear free in t, and the set
of variables that do not appear free in t (bound variables). In example , both terms that
represent the identity function have no free variables, but only one bound variable. In{ } { example , the set of free variables is a , b , and the set of bound variables is x,} y .
Definition 2.2.4 Let t be a λ-term. The set of bound variables and the set of free variables() () in t, respectively denoted BV t and FV t , are defined inductively on the structure of t
as follows:

() () () () () () { } BV x = ∅ BV λx.t = x ∪ BV t BV u v = BV u ∪ BV v
() () () () () () { } { } FV x = x FV λx.t = FV t ∖ x FV u v = FV u ∪ FV v

() Definition 2.2.5 A term t such as FV t = ∅ is said to be closed. Otherwise it is said to
be open.

Example displays two different representations of the identity function. In fact, it
is always possible to find an infinite number of λ-abstractions representing the same

14

1

2

1

xλ
.

xλ
x

x

function by changing the name of the variable that is bound. However, we would like to
relate these terms when reasoning about program equality, since they will have exactly
the same behaviour. We can define an equivalence relation over the set of terms in order
to consider such functions equal.

Definition 2.2.6 Two λ-terms u and v are said to be α-equivalent if they are equal up
to the renaming of bound variables, under the constraint that no free variable becomes
bound during the process. We will denote this u ≡ v.α
The evaluation procedure of the λ-calculus requires a way to substitute a free variablex in a term t with another term u . Although defining this operation seems trivial, it
poses a new problem: capture. Since the term u may contain free variables, if we are not
careful and only replace every occurrence of x by u , it may be that free variables in u
will become bound. We would like to avoid this, since it would completely change the
behaviour of the term. Let us consider as an example the term t = λy.x, which represents
a constant function. Now suppose that we wish to replace every occurrence of x by the
term u = y. If we naively substitute x by y, the resulting term will be λy.y which is the
identity function. One way to solve this problem would be to first rename the bound vari-
able y in t to z, and do the substitution afterwards.
Definition 2.2.7 Let t and u be terms, and x be a variable. The capture-avoiding] [substitution of variable x by the term u in the term t, denoted t x \defeq u is defined
inductively on the structure of t.

]] [[x x \defeq u = u y x \defeq u = y if y ≠ x
() (()) ()]]]] [[[[λx.t x \defeq u = λx.t t v x \defeq u = t x \defeq u v x \defeq u

() ()]] [[λy.t x \defeq u = λy'. t' x \defeq u if y ≠ x and λy.t ≡ λy'. t' with y' ∉ FV uα
() Definition 2.2.8 A β-redex is a term of the form λx.t u where t is a term in whichx may appear free, and u is a term.

The evaluation of terms of the λ-calculus relies on β-reduction, which is a procedure for
eliminating β-redexes. It can be intuitively thought of as function application. When a
term does not contain any β-redex, it is said to be in β-normal-form.

15

()] [Definition 2.2.9 Given a β-redex λx.t u , we define its β-reduction to be t x \defeq u . We
denote this operation → .β ()] [λx.t u → t x \defeq uβ
Let us now consider again our term examples, and fully reduce them in order to obtain
terms in β-normal-form. The terms in example and do not contain any β-redex, hence
they cannot be reduced any further. However, example can be reduced in the following
way, which yields the expected result:

(()) (()) ()]] [[λx.λy.x a b → λy.x x \defeq a b = λy.a b → a y \defeq b = aβ β
In the previous examples, the evaluation was finite, i.e. it terminated in a finite number(()) () of steps. However this is not always the case. We can consider the term λx. x x λx. x x
as a counter-example.

(()) () (()) () (()) ()] [λx. x x λx. x x → x x x \defeq λx. x x = λx. x x λx. x x → …β β
2.2.2 Simply-typed lambda-calculus

Since correctness properties such as termination are often not decidable, type systems
have been designed in order to identify correct programs. Of course a type-system cannot
be made to identify every correct program because if it were the case, the correctness
property would be decidable. The price to pay is that some correct programs are rejected
by the type-system. In this section we introduce a very simple type-system for the λ-calcu-
lus, which is called simply-typed λ-calculus.

We consider a fixed set of atomic types B that is non-empty and finite. The set
of all types T contains atomic types, and functions. It is generated by the following
BNF grammar: τ \bnfeq φ | τ → τ φ ∈ B
In order to be able to type open terms, we need to introduce typing contexts. They will
provide a type to every free variable in the considered term of the language.

16

2
31

Definition 2.2.10 A typing context is a partial function Γ : Λ → T mapping variablesx () to their type. It can be represented as a list mapping every variable in dom Γ to its type,
according to the following BNF grammar:

Γ \bnfeq ∅ | Γ, x : τ x ∈ Λ , τ ∈ Tx
Definition 2.2.11 A typing judgement is a triple of a typing context Γ, a term t of the() () λ-calculus, and a type τ, with the condition that FV t ⊆ dom Γ . It is denoted Γ ⊢ t : τ
and read "t has type τ in context Γ ".
The type of a term is derived using rules. These typing rules will look very similar to
the deduction rules presented for intuitionistic logic, but we will discuss this in more
detail later.

{ } Definition 2.2.12 A typing rule has the following form, where J , …, J is a finite set of1 n
typing judgements forming premises, J is a judgement forming the conclusion, and ν is
the name of the rule: J … J1 n νJ
The simply-typed λ-calculus has only three rules. The first one gives to variables the type
they have in the typing context.

Var() Γ ⊢ x : Γ x
The second rule allows us to give a type to a functions. If the body t of the function
has type B in the context Γ extended with the argument variable x of type A, then the
function λx.t has type A → B. Γ, x : A ⊢ t : B

FunΓ ⊢ λx . t : A → B
Finally, the third rule concerns function application, and simply says that if we have a
function u of type A → B and an element v of type A, then we can apply u to v and
obtain an element of type B.

Γ ⊢ u : A → B Γ ⊢ v : A
AppΓ ⊢ u v : B

17

Let us derive, as an example, the type of the term that was given in example . Recall
that this term represents function composition. In order to be concise, we will use Γ as a
shorthand for the context f : A → B, g : B → C, x : A.

Var VarΓ ⊢ f : A → B Γ ⊢ x : A
AppVar () Γ ⊢ g : B → C Γ ⊢ f x : B

App() () f : A → B, g : B → C, x : A ⊢ g f x : C
Fun() () f : A → B, g : B → C ⊢ λx . g f x : A → C

Fun() () () f : A → B ⊢ λg . λx . g f x : B → C → A → C
Fun() () () () ⊢λf. λg . λx . g f x : A → B → B → C → A → C

2.3 Curry-Howard Isomorphism

It has been made evident by Haskell Curry [] and
William Howard [] that types can be considered as formulae, and
that terms of the λ-calculus correspond to proofs of these formulae. If we compare the
typing rules of the simply-typed λ-calculus, and the deduction rules for the logical impli-
cation together with the axiom rule, the correlation becomes obvious.

ax Var⇔Γ, A ⊢ A () Γ ⊢ x : Γ x
Γ, A ⊢ B Γ, x : A ⊢ t : B→ Fun⇔i AΓ ⊢ A → B Γ ⊢ λx . t : A → B

Γ ⊢ A → B Γ ⊢ A Γ ⊢ u : A → B Γ ⊢ v : A→ App⇔eΓ ⊢ B Γ ⊢ u v : B
In order to recover the deduction rules starting from the typing rules, we only have
to remove the terms of the λ-calculus. The relation between typing rules, deduction
rules, terms and proofs goes even further: β-reduction can be given an interpretation in
terms of cut-elimination for the implication symbol. What is called a cut in a proof is
an occurrence of an introduction rule directly followed by an elimination rule. Some
part of the proof can be moved in such a way that the proof is still valid, and that the
symbol that is introduced and then eliminated no longer appears in the proof. We do not
give the details of the cut-elimination procedure here, as it is not necessary for this
work.

18

William A. Howard 1980
Haskell B. Curry, Robert Feys 1958

3

2.4 Extension to classical systems

In the previous section, we presented the set of rules for intuitionistic logic. Now,
consider the following formula, which is usually referred to as the law of the excluded
middle. A ∨ ¬A
Although it seems to be very simple and straight-forward, it cannot be proved using the
rules of intuitionistic logic. The consequences are great, since this rule has been used
in many mathematical reasonings ever since Aristotle. For instance, it forbids reasoning
using the principle of reductio ad absurdum.

2.4.1 Classical Logic

Classical logic is an alternative system in which the law of the excluded middle is added
as an axiom.

LEMΓ ⊢ A ∨ ¬A
The difference between intuitionistic and classical logic is that the former enforces that
we know from which branch of the proof-tree the proof comes. Let us consider the usual
example of a classical proof of the following theorem.

bTheorem 2.4.1 There exist a , b ∈ ℝ ∖ℚ such that a ∈ ℚ .

Proof. We know that 2 is irrational (2 ∈ ℝ ∖ℚ). Let us now consider the following
number. 2c = 2
By the law of the excluded middle, it is either rational, or it is not rational (irrational).

If it is rational, then we can take a = b = 2.
If it is not rational, then let us take a = c and b = 2, which will give us

22 2× 2 2() 2 = 2 = 2 = 2
which is indeed rational.

19

2
Even if this proof shows that the theorem is correct, we do not know whether 2 is
rational or not. In fact, it is possible to show, not without difficulty, that it is irrational.
There also exists a very simple intuitionistic proof for the theorem, using a cleverer() counter-example (a = 2 an b = log 3).2

There are alternative ways of recovering classical logic from intuitionistic logic that
have been shown to be equivalent to adding the law of the excluded middle. One can
for example introduce Pierce's law as an axiom,

PL(()) Γ ⊢ A → B → A → A
or add a rule for Double negation elimination.

Γ ⊢ ¬¬A ¬¬eΓ ⊢ A
2.4.2 Curry-Howard Isomorphism for classical logic

Before the Nineties, it was believed among researchers that classical systems had no
interesting algorithmic content. Everything changed when Timothy G. Griffin discovered
in 1990 that the Curry-Howard isomorphism could be extended to classical logic through
control operators []. Afterwards many other ways to perform this
extension were proposed, like Michel Parigot's λμ-calculus [].

Let us consider the language Λ , which is an extension of the λ-calculus with theᵒ��ᵒ��
control operator ᵒ��ᵒ��. It is generated by the following BNF grammar.

() t \bnfeq x | λx.t | t t | ᵒ��ᵒ�� x ∈ Λx
The type system of the simply-typed λ-calculus is extended with a rule, giving ᵒ��ᵒ�� the type
of Pierce's law.

ᵒ��ᵒ��(()) ⊢ᵒ��ᵒ�� : A → B → A → A
The semantics of terms containing control operators such as ᵒ��ᵒ�� can be given in terms

of evaluation contexts. Here we do not go into detail about this, since the operational
semantics of Λ will be given by the abstract machine that will be defined in theᵒ��ᵒ��
next section.

20

Michel Parigot 1992
Timothy G. Griffin 1990

2.5 Krivine's classical realizability

In this section we give the interpretation of the type system presented in the previous
sections in terms of classical realizability. We use the formalism introduced by Krivine
[], and adapt it to our system. We consider the language Λ andc
the set of stacks Π, which are generated by the following mutually recursive grammars:

() t \bnfeq x | λx.t | t t | ᵒ��ᵒ�� | k π \bnfeq ε | t . π x ∈ Λπ x
The terms of Λ are those of Λ extended with a constant k for every stack π ∈ Π.c ᵒ��ᵒ�� π
Stacks are simply lists of terms terminated by the empty stack constant ε.

A state of the Krivine's Abstract Machine (KAM) is called a process and is a couple of
a term t and of a stack π. It is denoted t⋆ π, and the set of processes is denoted Λ ⋆ Π.c
The execution of the machine is given by an evaluation relation \succ defined over processes.
It contains the following four rules.

] [λx.t ⋆ u . π \succ t x \defeq u ⋆ π
() t u⋆ π \succ t ⋆ u . π
ᵒ��ᵒ�� ⋆ t . π \succ t ⋆ k . ππ
k ⋆ t . π' \succ t⋆ ππ

The classical realizability interpretation is parametrised by a pole \dbottom , which is a set of
processes closed under anti-evaluation (i.e. if p ∈ \dbottom and p' \succ p, then p' ∈ \dbottom).

\ldbar \ldbar Definition 2.5.13 A formula (or type) τ is interpreted as two sets: a falsity value τ ⊆| | Π and a truth value τ ⊆ Λ . They are defined inductively on the structure of τ.∗
{ } { } \ldbar \ldbar \ldbar \ldbar \ldbar \ldbar \ldbar \ldbar | | | | τ → τ = τ . τ = c. π | c ∈ τ , π ∈ τ φ = εA B A B A B

\dbottom { } \ldbar \ldbar \ldbar \ldbar | | τ = τ = c ∈ Λ | ∀π ∈ τ c⋆ π ∈ \dbottom c
Definition 2.5.14 Given a pole \dbottom , we say that a process p realizes a formula (or type)| | A, denoted p ⊩ A, if p ∈ A .\dbottom

21

Jean-Louis Krivine 2009

One of the most interesting properties of classical realizability systems is that they are
compatible in some sense with type systems. Roughly, what we mean is that when a
proof-like term t has type T, then t should also realize T. This property is given more
formally by the adequation lemma.

Theorem 2.5.2 Let \dbottom be a fixed pole, I be a finite family of index, and t be a proof-like() term. If the judgement x : T ⊢ t : T is valid in the type system, and ∀i ∈ I t ⊩ T ,i i i \dbottom ii ∈I] [then t x \defeq t ⊩ T.i i i ∈I

22

The Krivine's abstract machine usually used as a model for the evaluation of terms in
classical realizability performs substitutions explicitly. When a β-redex is reduced, only a
term remains, and the machine does not keep track of what variable was substituted, and
by what term. This is not a problem in usual applications, however, when the terms that
are evaluated contain holes, we need to know exactly which variables are in scope, and
what values they have been assigned. Otherwise, holes cannot be filled using terms
containing variables that are in scope.

In this section, we introduce a version of Krivine's abstract machine, which has the
particularity of keeping the environment explicit by working on closures, and not on
terms. Our variant is close to the original design of Krivine's abstract machine, but has,
to our knowledge, never been used in classical realizability settings. It will hopefully offer
a greater flexibility, since it will allow us to define operations modifying the environment
directly (these aspects of the machine will be investigated in future works).

Explicit environments are convenient since values that are assigned to variables stay
available throughout the evaluation. This feature will be used when generating values to
fill holes. Another advantage of this system is that it is closer to what an actual implemen-
tation would look like (one would obviously not perform substitutions explicitly since it
would be inefficient).

3.1 Environment machine

We consider the language Λ defined in the previous chapter. It consists of the λ-cal-ᵒ��ᵒ��
culus extended with the instruction ᵒ��ᵒ��. We recall that it is generated by the following{ } grammar, where Λ = x, y , z , … is a countable set of variables:x

t \bnfeq x | λx.t | t t | ᵒ��ᵒ�� x ∈ Λx
\rangle \langle Definition 3.1.1 A closure is a couple t , σ where t is a term and σ is an environment,

which is a substitution which maps free variables of t to closures.
23

An explicit environment3
Krivine machine

() { Intuitively, in order to build a closure starting from a term t with FV t = x , …,1} { } x , we have to provide an environment σ = x ↦ c , …, x ↦ c where c , …, cn 1 1 n n 1 n
are closures.

Definition 3.1.2 The set of free variables in a closure, and the set of free variables in a
substitution are mutually inductively defined as follows:

\rangle \langle () (() ()) () FV t , σ = FV t ∖ dom σ ∪ FV σ
() () () { } FV x ↦ c , …, x ↦ c = FV c ∪…∪ FV c1 1 n n 1 n

\rangle \rangle \langle \langle () Definition 3.1.3 A closure t , σ with FV t , σ = ∅ is said to be closed.

] [Definition 3.1.4 The application of the substitution σ to the term t is denoted t σ . This
operation is defined inductively on the structure of the term t.

() (())]]]]] [[[[[x σ = σ x t u σ = t σ u σ ᵒ��ᵒ�� σ = ᵒ��ᵒ��
() ()]] [[λx.t σ = λx'.t' σ with λx.t ≡ λx'.t' and x' ∉ FV σα

We also consider the type-system of the simply-typed λ-calculus, with a rule giving the
type of Pierce's law to ᵒ��ᵒ��. We recall that the set of all types T is generated by the following
grammar, where B is a finite, but non-empty, set of atomic types.

τ \bnfeq τ → τ | φ φ ∈ B
A typing judgement will have the form Γ ⊢ t : τ, where t is a term, τ is a type, and Γ is
a typing context mapping every free λ-variable in t to its type. The typing rules of the
system are the following:

Var ᵒ��ᵒ��() (()) Γ ⊢ x : Γ x Γ ⊢ ᵒ��ᵒ�� : A → B → A → A
Γ, x : A ⊢ t : B Γ ⊢ u : A → B Γ ⊢ v : A

Fun AppΓ ⊢ λx.t : A → B Γ ⊢ u v : B
We now extend the language with an additional set of constants, which will allow

the machine to save the current state of its stack π, and restore it when the constant

24

associated to the stack k is encountered. The set of closed closures of the extendedπ
language will be denoted Λ . A stack is simply a list of closures, terminated by the empty∗
stack constant ε. The set of stacks will be denoted Π. Note that the terms and stacks are
mutually inductively defined.

\rangle \langle t \bnfeq … | k π \bnfeq ε | t , σ . ππ
\rangle \langle Definition 3.1.5 A process is a couple of a closed closure t , σ and a stack π, it is denoted\rangle \langle t , σ ⋆ π. The set of all processes is written Λ ⋆ Π.∗

The one-step evaluation relation \succ over the set of processes is exhibited below.

\rangle \langle () x, σ ⋆ π \succ σ x ⋆ π
\rangle \rangle \langle \langle { } λx.t , σ ⋆ c. π \succ t , σ + x ↦ c ⋆ π

\rangle \rangle \rangle \langle \langle \langle () t u , σ ⋆ π \succ t , σ ⋆ u , σ . π
\rangle \rangle \langle \langle ᵒ��ᵒ��, σ ⋆ c. π \succ c⋆ k , σ . ππ

\rangle \langle k , σ ⋆ c. π' \succ c⋆ ππ
Note that the first three rules are those relating to the evaluation of terms of theλ-calculus, while the two last rules are those handling the classical part of computation,

i.e. saving the execution context, and restoring it. The exact same remark can be made
when looking at the evaluation relation of the Krivine's abstract machine presented in the
last chapter. The main difference between the two abstract machines is that the one
presented in this chapter has an additional rule to replace variables by the value they have
in the environment. This rule is not required in setting with implicit environments since
variables are substituted on the fly by their values.

3.2 Realizability

Relizability using a Krivine's abstract machine with explicit environments is very simi-
lar to the notion or realizability presented in the last chapter. This is not surprising

25

since the terms of the language coincide exactly. The realizability interpretation is again
parametrized by a pole.

Definition 3.2.6 A pole is a set of processes \dbottom ⊆ Λ ⋆ Π closed under anti-evaluation,∗∗i.e. for all p , p' ∈ Λ ⋆ Π, if p' ∈ \dbottom and p \succ p,' then p ∈ \dbottom .∗
Every type is interpreted as two sets: a set of stacks (falsity value) and a set of closures
(truth value).

\ldbar \ldbar Definition 3.2.7 Every type τ is interpreted as a falsity value τ ⊆ Π and a truth value| | τ ⊆ Λ defined inductively on the structure of τ.∗
{ } { } \ldbar \ldbar \ldbar \ldbar \ldbar \ldbar \ldbar \ldbar | | | | τ → τ = τ . τ = c. π | c ∈ τ , π ∈ τ φ = εA B A B A B

\dbottom { } \ldbar \ldbar \ldbar \ldbar | | τ = τ = c ∈ Λ | ∀π ∈ τ c⋆ π ∈ \dbottom ∗
\rangle \langle Definition 3.2.8 Given a pole \dbottom , we say that a closure t , σ realizes its type τ, denoted\rangle \rangle \rangle \rangle \langle \langle \langle \langle | | t , σ ⊩ τ, when t , σ ∈ τ . If t , σ ⊩ τ for all \dbottom , we say that t , σ universally real-\dbottom \dbottom \rangle \langle izes the type τ. We denote this t , σ \urealize τ.

We now give the adequation lemma for the new system. It states that the realizability
interpretation is adequate with the type system, in the sense that if a term t has type τ\rangle \langle in a context Γ, then a closure t , σ , built by mapping variables of Γ to closures realizing
their types, realizes the type τ.

() Theorem 3.2.1 Let \dbottom be a fixed pole, I be a finite family of indices, Γ = x : τ bei i i ∈I\rangle \langle { } a context and σ = x ↦ t , σ be a substitution. If the judgement Γ ⊢ t : τ isi i i i ∈I \rangle \rangle \langle \langle provable using the deduction system, and if t , σ ⊩ τ for all i ∈ I, then t , σ ⊩ τ.i i \dbottom i \dbottom
Proof. We do a proof by induction on the length of the proof of Γ ⊢ t : τ. We consider
the rule used in the last step of the proof. \rangle \langle Var: we have t = x for some fixed i ∈ I and we must show that x , σ ⊩ τ , whichi i \dbottom i\rangle \langle \ldbar \ldbar is equivalent to showing that x , σ ⋆ π ∈ \dbottom for every stack π ∈ τ . By hypothesisi i\rangle \rangle \langle \langle \ldbar \ldbar we know that t , σ ⊩ τ , which gives us t , σ ⋆ π ∈ \dbottom for every stack π ∈ τ .i i \dbottom i i i i\rangle \rangle \langle \langle We also know that x , σ ⋆ π \succ t , σ ⋆ π. Therefore, since \dbottom is closed underi i i\rangle \langle \ldbar \ldbar anti-evaluation, we have x , σ ⋆ π ∈ \dbottom for every stack π ∈ τ .i i

26

\langle App: we have t = u v, Γ ⊢ u : τ → τ and Γ ⊢ v : τ , and we must show that u v ,A B A\rangle \rangle \langle σ ⊩ τ , which is equivalent to showing that u v , σ ⋆ π ∈ \dbottom for every stack π ∈B \rangle \rangle \langle \langle \ldbar \ldbar τ . By induction hypothesis we have u , σ ⊩ τ → τ and v , σ ⊩ τ , which areB A B A\rangle \rangle \rangle \langle \langle \langle | | | | equivalent by definition to u , σ ∈ τ → τ and v , σ ∈ τ . Moreover v , σ .A B A\rangle \rangle \langle \langle \ldbar \ldbar \ldbar \ldbar π ∈ τ → τ for all π ∈ τ . This gives us u , σ ⋆ v , σ . π ∈ \dbottom for every stackA B B \rangle \rangle \rangle \langle \langle \langle \ldbar \ldbar π ∈ τ . We also have u v , σ ⋆ π \succ u , σ ⋆ v , σ . π, hence, since \dbottom is closedB \rangle \langle \ldbar \ldbar under anti-evaluation we obtain that u v , σ ⋆ π ∈ \dbottom for every stack π ∈ τ .B\rangle \langle Fun: we have t = λx.v and Γ, x : τ ⊢ v : τ . We must show that λx.v , σ ⊩ τ →A B A\rangle \langle \ldbar τ , which is equivalent to showing that λx.v , σ ⋆ π ∈ \dbottom for every stack π ∈ τ →B A\ldbar \ldbar \ldbar | | τ . By definition, a stack π ∈ τ → τ has the form c. π,' with c ∈ τ and π' ∈B A B A\rangle \langle { } \ldbar \ldbar τ . By induction hypothesis we have v , σ + x ↦ c ⊩ τ , which is equivalentB B\rangle \rangle \langle \langle { } \ldbar \ldbar to v , σ + x ↦ c ⋆ π' ∈ \dbottom for every stack π' ∈ τ . Hence, since λx.v , σ ⋆ c.B\rangle \langle { } π' \succ v , σ + x ↦ c ⋆ π' and \dbottom is closed under anti-evaluation we obtain that\rangle \langle \ldbar \ldbar λx.v , σ ⋆ c. π' ∈ \dbottom for every stack π = c. π' ∈ Τ → Τ .a b\rangle \langle (()) ᵒ��ᵒ��: we have t = ᵒ��ᵒ�� and we must show that ᵒ��ᵒ��, σ ⊩ τ → τ → τ → τ whichA B A A\rangle \langle (() \ldbar is equivalent to showing that ᵒ��ᵒ��, σ ⋆ δ ∈ \dbottom for every stack δ ∈ τ → τ →A B) (\ldbar | τ → τ . By definition, any such stack will have the form c. π, with c ∈ τ →A B A\rangle \rangle \langle \langle) | τ → τ and π ∈ τ . Since we know that ᵒ��ᵒ��, σ ⋆ c. π \succ c⋆ k , σ . π, it isB A A π\rangle \langle () | enough to show that c⋆ k , σ . π ∈ \dbottom for every π ∈ τ and c ∈ τ → τ →π A A B\rangle \langle | | | τ . To do so, it is enough to show that k , σ ∈ τ → τ for all π ∈ τ , whichA π A B A\rangle \langle \ldbar \ldbar is equivalent to showing that k , σ ⋆ δ' ∈ \dbottom for every stack δ' ∈ τ → τ . Butπ A B\rangle \langle | | every such stack has the form c'. π' with c' ∈ τ and π' ∈ τ , and k , σ ⋆ c'. π' \succ A B π | | c'⋆ π, hence it is enough to show that c'⋆ π ∈ \dbottom , which is true since c' ∈ τ andA\ldbar \ldbar π ∈ τ .A
As an immediate corollary, we get that if a term is typed in an empty context, then the
closure built from the term with an empty environment realizes the type of the term.

Corollary 3.2.2 Let \dbottom be a fixed pole. If t is a term and τ is a type such that ⊢t : τ, then\rangle \langle t , ∅ ⊩ τ.
Proof. Immediate from the adequation lemma.

One of the greatest strengths of realizability is that the language of terms and the
transition relation can be extended very easily, without losing any of the results obtained
without the extension. In fact, the usual presentation of realizability is very parametric.

27

An axiomatization of the requirements gives rise to an infinite family or realizability
models. Our realizability model can also be expressed in a parametric way, however, we
chose to present only a specific model for the sake of simplicity and conciseness.

28

In this chapter we extend the system with a new kind of term that will be used to model
holes, i.e. goals in proof assistants. These holes will have the particularity of carrying a
type and a context, and will be called contextually typed holes (CTH). The type system will
be extended, and we will need to adapt the adequation lemma. Finally, we will add reduc-
tion rules that will allow the holes to be filled during the computation. This process will
act as the central part of the testing procedure.

4.1 Contextually typed holes and their substitution

{ } Let Λ = c, d , e… be a countable set of names with Λ ∩ Λ = ∅. Elements of Λh x h h
will be used to identify holes.

[Definition 4.1.1 A contextually typed hole (or CTH for short) is a new atomic term Δ ⊢] c : τ , where Δ is a context, c ∈ Λ is a name, and τ ∈ T is a type. When the context andh] [type associated to a CTH are not explicitly required we will omit them and write Δ ⊢ c ,]] [[c : τ or simply c .
The language is now extended with CTH, which will, in some sense, play the role of
meta-variables.

] [t \bnfeq x | λx.t | t t | ᵒ��ᵒ�� | k | Δ ⊢ c : τ x ∈ Λ , π ∈ Π, c ∈ Λ , τ ∈ Tπ x h
Definition 4.1.2 The set of CTH appearing in a term t is defined inductively on the
structure of t as follows:

() (()) () () () () CTH x = ∅ CTH t u = CTH t ∪ CTH u CTH λx.t = CTH t
() ()]] [[{ } CTH ᵒ��ᵒ�� = ∅ CTH c = c

29

Realizability and holes4

The CTH have an associated notion of substitution allowing the conversion of a term
containing holes (i.e. CTH) into a term without holes.

] [Definition 4.1.3 A substitution candidate for a CTH Δ ⊢ c is a term t such that() () FV t ⊂ dom Δ . The set of substitution candidates for the CTH having the name c is
denoted SC .c
Definition 4.1.4 Given a term t, a hole substitution is a partial function Σ : Λ → Λh ᵒ��ᵒ��] [mapping every CTH c in t to a term t ∈ SC .c c

() { } Intuitively, a hole substitution for a term t with CTH t = c (with I being a finitei i ∈I{ } family of index) is a map c ↦ t with t ∈ SC for all i ∈ I.i i i cii ∈I
Definition 4.1.5 We denote tΣ the term t to which the hole substitution Σ has been
applied. This operation is defined inductively on the structure of t.

() (()) () xΣ = x λx.t Σ = λx.tΣ t u Σ = tΣ uΣ
()] [ᵒ��ᵒ��Σ = ᵒ��ᵒ�� c Σ = Σ c

4.2 Type of a hole and adequation lemma

We now extend the system with an additional typing rule, which will be responsible for
giving CTH their respective types. There is only one constraint: the context of the CTH
should be a subset of the global context. Intuitively, substitution candidates that will
replace holes can contain free occurrences of the variables that are in the context of the
CTH. Consequently, values for these variables should be available in the environment
during computation. Δ ⊂ Γ

Hole] [Γ ⊢ Δ ⊢ c : A : A
The adequation lemma for the new system can now be stated. It differs only slightly

from the one for the system without holes. There are additional hypotheses, and a
hole substitution is introduced and applied to the conclusion. The proof itself is mostly
unchanged, only a new case appears for the typing rule of CTH.

30

Theorem 4.2.1 Let \dbottom be a fixed pole, I and K be two finite families of indices, Γ =\rangle \langle () { } x : τ be a context, σ = x ↦ t , σ be a substitution, t be a term withi i i i ii ∈I i ∈I()] [{ } { } CTH t = Δ ⊢ c : θ and Σ = c ↦ u be a hole substitution. If thek k k k kk ∈K k ∈K \rangle \langle judgement Γ ⊢ t : τ is provable using the deduction system, if t , σ ⊩ τ for all i ∈i i \dbottom i\rangle \langle I, and if Δ ⊂ Γ implies u ∈ SC for all k ∈ K, then tΣ , σ ⊩ τ.k k c \dbottom k

Proof. We do a proof by induction on the length of the proof of Γ ⊢ t : τ. The case for
the rules Var, App, Fun and ᵒ��ᵒ�� are very similar to the proof of the adequation lemma in
the previous chapter, hence we will not give details. There is one new case in this rule
since we have an additional typing rule:] [Hole: We consider t = Δ ⊢ c : θ for some k ∈ K. We have Δ ⊂ Γ, and we mustk k k k\rangle \rangle \langle \langle] [show that c Σ , σ ⊩ θ , which is equivalent to showing that u , σ ⊩ θ , which\dbottom k k \dbottom k

is true by hypothesis.

We now have a realizability model that is sound with the type system extended
with the rule for typing CTH. It remains to define the way in which holes will be
reduced. Note that adding additional transition rules to the system will not change the
adequation lemma. It is a very common practice in the field of classical realizability to
prove an adequation lemma using a set of rules, and to work with an extended set of
rules afterwards.

4.3 Reduction of CTH and plugs

A CTH is meant to be replaced by a term called a plug, during the computation process
of the machine. A plug p is built using variables that are in the context, and possibly
new CTH that would have to be replaced (or instantiated) later on.

Definition 4.3.6 We denote P the set of all plugs that are candidates for replacing thec] [CTH Δ ⊢ c : τ . Its definition depends on the structure of τ:] [{ } if τ = τ → τ , then P = λx. Δ , x : τ ⊢ d : τ where x ∈ Λ is a fresh vari-A B c a B x
able (not appearing in Δ), and d ∈ Λ is a fresh name.h()]] [[{ if τ = φ ∈ B, then P = x Δ ⊢ c : τ … Δ ⊢ c : τ | x : τ → … → τ →c 1 1 n n 1 n()] [} { } φ ∈ Δ ∪ ᵒ��ᵒ�� Δ ⊢ d : φ → θ → φ | θ ∈ T .

Note that if the language contained typed constants, they could also be used for building
plugs. In fact, the most important properties of plugs is that the replacing of a CTH by

31

a plug will always preserve the typing. Plugs should be defined in a way that respects
typing.

] [Theorem 4.3.2 Given a CTH Δ ⊢ c : τ , any term p ∈ P satisfies the judgement Δ ⊢cp : τ (and by weakening any judgement Γ ⊢ p : τ with Δ ⊂ Γ).
Proof. Trivial (by definition of P).c

The reduction of CTH terms is defined in terms of a non-deterministic evaluation
relation ↝ over the set of processes. The CTH that is in head position is substituted by a
plug, and the same plug should also be used to substitute every occurrence of the same
CTH in the environment and in the stack. Since we are in call-by-name settings, if we
do not substitute every occurrence of a CTH at once, the CTH might be substituted
by different plugs in different places, and this would mean that the language is no longer
functional.

] [Definition 4.3.7 The substitution of a CTH c by a plug p ∈ P in a term, closure,c
environment, stack, is defined mutually inductively on the structure of the term, closure,
environment, stack:

()]]] [[[x c \defeq p = x λx.t c \defeq p = λx.t c \defeq p
(()) ()]]]] [[[[t u c \defeq p = t c \defeq p u c \defeq p ᵒ��ᵒ�� c \defeq p = ᵒ��ᵒ��

]]]]] [[[[[c c \defeq p = p d c \defeq p = d withd ≠ c
\rangle \rangle \langle \langle]]]]] [[[[[k c \defeq p = k t , σ c \defeq p = t c \defeq p , σ c \defeq p] [π π c\defeq p

]]] [[[{ } { } x ↦ c , …, x ↦ c c \defeq p = x ↦ c c \defeq p , …, x ↦ c c \defeq p1 1 n n 1 1 n n
()]]]] [[[[d . π c \defeq p = d c \defeq p . π c \defeq p ε c \defeq p = ε

Definition 4.3.8 The evaluation relation ↝ is defined as follows:

\rangle \rangle \langle \langle]]] [[[c , σ ⋆ π ↝ p , σ c \defeq p ⋆ π c \defeq p p ∈ Pc

32

A full transition relation for the system can now be defined, which will include the
transition rules of the initial transition relation, and also the rules of the relation ↝ .

Definition 4.3.9 The full transition relation, denoted \succeq is defined to be the union of
the initial transition relation \succ and ↝ .

\succeq = \succ ∪ ↝
We now want to show that the reduction of CTH terms always has a correct behaviour,
i.e. that a CTH either reduces to a correct final state of the machine, or it instantiates
new CTH forever (alternating finite sequences of reduction from the relation \succ , and
single reductions using ↝).

Definition 4.3.10 We denote G the set of correct final states of the machine. For every
final state g ∈ G, there should not exist any process p such that g \succ p.
Lemma 4.3.3 The relation \succ is normalizing in typed settings (i.e. under the same
assumptions as the adequation lemma).

() Proof. Let I be a finite family of index. We consider a term t such that x : τ ⊢i i i ∈I\rangle \rangle \langle \langle { } t : τ, and an environment σ = x ↦ t , σ such that ∀i ∈ I t , σ ⊩ τ . Underi i i i i ii ∈I \rangle \langle these conditions, the adequation lemma gives us t , σ ⊩ τ. This is true in particularn \rangle \langle { } for the pole \dbottom = p | ∃n ∈ℕ p \succ p' ∈ G . We get that t , σ ⊩ τ which is equivalent\dbottom \rangle \langle \ldbar \ldbar to t , σ ⋆ π ∈ \dbottom for every π ∈ τ . By definition of \dbottom such processes have a finite
reduction to a good final state of the machine.

Definition 4.3.11 We split the reduction of a CTH into three kinds of stages:
computation: finite reduction from a process not having a CTH in head position to a
process having a CTH in head position, using the relation \succ .
generation: one-step reduction from a process having a CTH in head position using
the relation ↝ .
result: finite reduction from a process not having a CTH in head position to a good
final state of the machine using the relation \succ .

Definition 4.3.12 A testing tree is a potentially infinite tree modeling the possible input
generations for a given test. Each leaf of the tree represents in fact a result stage.

33

Theorem 4.3.4 Any reduction of a CTH term has a correct behaviour, i.e. either it is
an infinite alternation of generations and computations, or it is a finite alternation of
generations and computations terminated by a result.

At the time of the writing, the proof of the last theorem is not finished. We start the
proof by considering the following function F, and take as a pole its greatest fixed-pointνF: ∗ ∗ \rangle \rangle \langle \langle () { } { }] [F X = p | p \succ p' ∈ G ∪ p | p \succ c , σ ⋆ π ∧ ∀p ∈P , a , σ ⋆ π ∈ Xc
The pole \dbottom = νF is closed under anti-reduction. It remains to prove that a CTH realizes
its type to complete the proof.

34

In the previous two chapters we introduced a realizability model making use of a Kriv-
ine's abstract machine which had explicit environments. This system was extended with
contextually typed holes which allowed us to represent holes in a term. In this chapter we
are going to define the testing procedure. In particular we will show what preprocessing
is required before being able to run a test, and we will provide some examples.

5.1 Notion of test

Our aim is to test typing judgements of the form Γ ⊢ t : τ, where t is a term containing
two kinds of free variables:

regular free variables to which Γ provides a type,
and free goal variables that do not appear in Γ.

The goal type of the second set of variables should be provided by the user along with
the judgement to test, in the form of an additional context Σ.
Definition 5.1.1 A judgement with goal is a quadruple of two contexts Γ and Σ with the() () () () condition that dom Γ ∩ dom Σ = ∅, a term t with FV t ⊂ dom Γ ∪ Σ , and a type τ.
It is denoted Γ ⊢ t : τ.Σ
Running a test on a judgement with goal Γ ⊢ t : τ is done in three steps:Σ
1. Preprocessing: the judgement is transformed into a term t' containing CTH, which
is semantically equivalent to the judgement t in some sense. This process requires
data from the context Σ, and some scope resolution into the term t.

2. Data generation: a substitution σ, mapping every variable in Γ to a closure that\ldbar \ldbar realizes its type, is generated, along with a stack π ∈ τ . \rangle \langle 3. Test run: the abstract machine is executed starting from the state t', σ ⋆ π.
The result of a test is to be interpreted in terms of the observable behaviour of the
abstract machine, and more precisely, in terms of the state in which the machine stops (if
it stops).

35

Testing procedure5

If the machine stops in a correct final state, or does not stop, then the test is
a success.
If the machine stops in a bad final state, or if the instantiation of a plug fails (i.e. the
set of plugs is empty) then the test fails.

Of course, if the machine does not stop by itself, we will have to interrupt it at some
point. However, in that case, we will lose the information: we will never know whether
the machine was going to stop in, say, ten thousands steps, or if it was going to run
forever. This is one of the limits of the testing procedure.

5.2 Preprocessing

Before being able to run the actual testing procedure, we have to change the data
provided by the user into a term that will be executed in the abstract machine. Given a
judgement with goal Γ ⊢ t : τ, we need to build from the term t, a term t' containingΣ
no more free goal variables, but that is, in some sense, semantically equivalent to t. The
idea will be to replace goal variables with CTH.

Since a free goal variable x may appear more than once in the term t, we need
to know the set of variables that are in scope at every occurrence of x in t, i.e. what
variables will be available to be used when filling every hole corresponding to x.
Definition 5.2.2 The minimal scope of a free variable x in a term t is the intersection of() the scopes at each occurrence of x in t. It is denoted MS t .x
Intuitively, the minimal scope of a free variable corresponds to the set of λ-abstractions
that are in the part that is common to the paths going from the root of the syntactic tree(((of the term to each occurrence of the variable. For example, in the term λx. λy. λz .))) { } z a a b c, the minimal scope of variable a is x, y .

36

xλ.
yλ.

zλ.
z a

a
b

We can now formally define the operation consisting in getting a judgement with
goal ready for testing.

Definition 5.2.3 Let Γ ⊢ t : τ be a typing judgement with goal where I is a finite() y : θi i i ∈I
family of index. The term that will be run into the abstract machine to test the judgement] [{ } is t' = t σ where σ = Δ ⊢ c : θ , and for all i ∈ I, Δ is a context mapping everyi i i ii ∈I() variable in MS t to its type.yi

5.3 Examples

Since the language and type-system we are considering is very simple (type-checking is
decidable), it seems impossible to provide an example that is not trivial. We will however
discuss a few examples if only to try to get some understanding about this new notion of
test. Extensions of the system to more complex (and interesting) languages will be the
subject of future work.

Let us consider, as a first example, the judgement with goal ⊢ λx .h : φ → φ. Theh :φ
preprocessing is very simple in the case of this example since there is only one free goal] [variable: h . The term to be run in the abstract machine is t' = λx. x : φ ⊢ c : φ . Since\ldbar \ldbar Γ = ∅, we have σ = ∅. We need to pick a stack π ∈ φ → φ , which will be of the form\langle [| | a . ε with a ∈ τ , by definition. The machine is then run from the state λx. x : τ ⊢ c :\rangle] τ , ∅ ⋆ a . ε, which results in the following computation.

\rangle \rangle \langle \langle]] [[{ } λx. x : τ ⊢ c : τ , ∅ ⋆ a . ε \succ x : τ ⊢ c : τ , x ↦ a ⋆ ε∅ ∅
\rangle \langle { } ↝ x, x ↦ a ⋆ ε \succ a⋆ ε{ } { } c ↦ x c ↦ x

| | The test is a success for every a ∈ φ . () Let us look at another example: ⊢ λf.λx.h : φ → φ → φ → φ . After theh :φ A B B CC \langle [preprocessing, the machine will start running in state λf.λx. f : φ → φ , x : φ ⊢A B B\rangle] | | c : φ , ∅ ⋆ a . b . ε, where a ∈ φ → φ and b ∈ φ .C A B A
\rangle \rangle \langle \langle]] [[{ } λf. λx . c , ∅ ⋆ a . b . ε \succ λx . c , f ↦ a ⋆ b. ε

\rangle \langle] [{ } \succ f : φ → φ , x : φ ⊢ c : φ , f ↦ a , x ↦ b ⋆ εA B B C

37

This is an error case: the process cannot be reduced further since P = ∅. The failurec() was to be expected since there is no proof of ⊢ A → B → B → C. The corresponding
testing tree is empty.

Let us now consider a judgement with goal that will generate a diverging test: ⊢h :φA\langle ()] [λf.h : φ → φ → φ . The machine starts on the state λf. f : φ → φ ⊢ c : φ ,A A A A A A\rangle | | σ ⋆ a . ε where ε ∈ φ → φ . In the case of this process, an infinite number of testsA A
will be generated since the only variable in the context is f : φ → φ , the only possibleA A
choice for generating a value of type φ is to apply f to a hole of type φ . This processA A
will be repeated an infinite number of times. Intuitively, the term generated will have() () () () the form f f f f …. Whatever the test that will be run on this term, the computation(will not stop, hence we will not have any information about the term. Obviously, ⊢ A →) A → A cannot be proved, therefore this example shows that the testing procedure is
not complete. The corresponding testing tree is infinite and linear, it has only one
infinite branch.

Alternatively, there are terms that can have diverging tests, but that are correct.() Consider for example the judgement with goal ⊢ λf.λx .h : φ → φ → φ → φ .h :φ A A A AA
Intuitively, the same infinite tests that were generated in the previous example can be
obtained. However, there is an other way of generating a plug of typeφ that will stop theA() () () computation on a success (i.e. the term generated will have the form f f f …x). The
testing tree has exactly one infinite branch, but at each note, there is a path of length one
to a leaf.

38

The outcomes that we can draw from this study are multiple, however we must balance
them against the fact that, in the system we are using, types are decidable. Hence,
Type-checking is a simpler and more powerful tool to check if a judgement is valid.

6.1 Main contribution

Giving an interpretation of the testing procedure in terms of Krivine's classical realiza-
bility allowed us to show that the notion of test is correct, in the sense that if all tests
pass for a given judgement, then the judgement is true, and conversely, it a test fails,
then the considered judgement is false.

In order to show this property, we used a Krivine's abstract machine which has the
particularity of leaving the environment explicit. We also proved an adequation lemma
for this machine, which, to our knowledge, had never been done before.

Moreover, through the use of the call/cc instruction, we extended the testing frame-
work to classical systems. This extension was performed in a very natural way through
the framework of classical realizability.

There remains plenty of ground for future exploration, and we have submitted an
application for funding for a PhD thesis.

6.2 PhD Thesis project

The starting point of the thesis project will be to study the property of realizability when
making use of a Krivine machine with explicit environments. The explorations done
during this study seem to show that the machine with environments might be more
general. One of our ideas is to try to use environments for modeling references in the
language of terms.

In a second part of the thesis we will extend the system to more expressive languages
such as dependent type theories, for example. This will require us to define a notion of
realizability for such systems.

39

Conclusion and future6
work

6.3 Acknowledgements

First of all, I would like to thank my two advisors, Pierre Hyvernat and Christophe Raffal-
li, for their help and support throughout my internship. Thank you also to Alexandre
Miquel for accepting to review my work, and to attend my official presentation as an
external expert. Thank you to Karim Nour for accepting to be my advisor for my PhD
thesis next year, together with Pierre Hyvernat. I would also like to address a special
thank to my valued editor, and girlfriend, Branwen Chilton.

6.4 Disclaimer

This work was written using a new typesetting system called Patoline (),
which is an alternative to the TeX/LaTeX systems. This project was initiated at the LAMA,
and it is still being developed currently. This document is one of the first to be completely
written using Patoline, which is why we would like to apologise for any small typesetting
errors that may be found in this document.

40

patoline.com

http://patoline.com

[Peter Dybjer 2010] Peter Dybjer, Program Testing and Constructive Validity, 2010
[Colin Runciman, Matthew Naylor, Fredrik Lindblad 2008] Colin Runciman, Matthew

Naylor, Fredrik Lindblad, Smallcheck and lazy smallcheck: automatic exhaustive test-
ing for small values, 2008

[Koen Claessen, John Hughes 2000] Koen Claessen, John Hughes, QuickCheck: a light-
weight tool for random testing of Haskell programs, 2000

[Rodolphe Lepigre 2012] Rodolphe Lepigre, Testing Judgements of Type Theory, 2012
[Pierre Clairambault] Pierre Clairambault, Testing semantics for PCF
[Peter Dybjer, Pierre Clairambault 2012] Peter Dybjer, Pierre Clairambault, Testing sem-

antics of dependent types, 2012
[William A. Howard 1980] William A. Howard, The Formulas-as-Types Notion of Con-

struction, 1980
[Haskell B. Curry, Robert Feys 1958] Haskell B. Curry, Robert Feys, Combinatory Logic,

Volume I, 1958
[Michel Parigot 1992] Michel Parigot, Lambda-mu-calculus: An Algorithmic Interpreta-

tion of Classical Natural Deduction, 1992
[Timothy G. Griffin 1990] Timothy G. Griffin, A Formulae-as-Types Notion of Control,

1990
[Jean-Louis Krivine 2009] Jean-Louis Krivine, Realizability in classical logic, 2009

41

Bibliography

	
	Introduction
	Automatic testing tools
	Specification-based testing
	Debugging by testing

	Proof assistants
	A brief history of judgement testing, motivations
	Contents of this report

	Prerequisites
	Constructive logic
	-calculus and type theory
	-calculus
	Simply-typed lambda-calculus

	Curry-Howard Isomorphism
	Extension to classical systems
	Classical Logic
	Curry-Howard Isomorphism for classical logic

	Krivine's classical realizability

	An explicit environment Krivine machine
	Environment machine
	Realizability

	Realizability and holes
	Contextually typed holes and their substitution
	Type of a hole and adequation lemma
	Reduction of CTH and plugs

	Testing procedure
	Notion of test
	Preprocessing
	Examples

	Conclusion and future work
	Main contribution
	PhD Thesis project
	Acknowledgements
	Disclaimer

