
The PML Language:
Realizability at the Service of Program Proofs

Rodolphe Lepigre
Realizability workshop { 08/03/2018 { Marseille

Using OCaml as a Proof System: A Silly Idea?

(* Empty type (logical absurdity). *)

type empty = { empty : 'a. 'a }

(* Logical negation. *)

type 'a neg = 'a � empty

(* The law of the excluded middle. *)

type 'a excluded_middle =

| True of 'a

| False of 'a neg

Rodolphe Lepigre 1 / 34

Using OCaml as a Proof System: A Silly Idea?

(* Empty type (logical absurdity). *)

type empty = { empty : 'a. 'a }

(* Logical negation. *)

type 'a neg = 'a � empty

(* The law of the excluded middle. *)

type 'a excluded_middle =

| True of 'a

| False of 'a neg

(* The law of the excluded middle implies double negation elimination. *)

let proof : 'a excluded_middle � 'a neg neg � 'a = fun em h �

match em with

| True a � a

| False not_a � (h not_a).empty

Rodolphe Lepigre 1 / 34

Toward a Programming Language, with Program Proving Features

An ML-like programming language with:

records, variants (constructors), ,

polymorphism, ,

a call-by-value evaluation strategy,

efzects (control operators),

a Curry-style syntax (light) and .

Rodolphe Lepigre 2 / 34

subtyping

general recursion

inductive types

Toward a Programming Language, with Program Proving Features

An ML-like programming language with:

records, variants (constructors), ,

polymorphism, ,

a call-by-value evaluation strategy,

efzects (control operators),

a Curry-style syntax (light) and .

For proving program, the type system is enriched with:

programs as individuals (higher-order layer),

an equality type t� u (observational equivalence),

a dependent zunction type (typed quanti{cation).

Rodolphe Lepigre 2 / 34

Termination checking is required zor proozs.

subtyping

general recursion

inductive types

Toward a Programming Language, with Program Proving Features

An ML-like programming language with:

records, variants (constructors), ,

polymorphism, ,

a call-by-value evaluation strategy,

efzects (control operators),

a Curry-style syntax (light) and .

For proving program, the type system is enriched with:

programs as individuals (higher-order layer),

an equality type t� u (observational equivalence),

a dependent zunction type (typed quanti{cation).

Rodolphe Lepigre 2 / 34

Termination checking is required zor proozs.

subtyping

general recursion

inductive types

Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

Rodolphe Lepigre 3 / 34

Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m�nat, add Zero m � m =

fun m { {} }

Rodolphe Lepigre 3 / 34

Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m�nat, add Zero m � m =

fun m { {} }

val rec add_n_Zero : �n�nat, add n Zero � n =

fun n {

case n {

Zero � {}

S[p] � add_n_Zero p

}

}

Rodolphe Lepigre 3 / 34

Part III Specificities of the Type System

Part III Formalisation of the System and Semantics

Part III Semantical Value Restriction

Rodolphe Lepigre 4 / 34

Part I

Specificities of the Type System

Rodolphe Lepigre 5 / 34

Properties as Program Equivalences

Examples oz (equational) program properties:

add (add m n) k � add m (add n k) (associativity oz add)

rev (rev l) � l (rev is an involution)

map g (map f l) � map (fun x {g (f x)}) l (map and composition)

sort (sort l) � sort l (sort is idempotent)

Rodolphe Lepigre 6 / 34

Properties as Program Equivalences

Examples oz (equational) program properties:

add (add m n) k � add m (add n k) (associativity oz add)

rev (rev l) � l (rev is an involution)

map g (map f l) � map (fun x {g (f x)}) l (map and composition)

sort (sort l) � sort l (sort is idempotent)

Speci{cation oz a sorting zunction using predicates:

is_increasing (sort l) � true (sort produces a sorted list)

is_perm (sort l) l � true (sort yields a permutation)

Rodolphe Lepigre 6 / 34

Equality Types and Equivalence

We consider a new type zormer t� u (where t and u are untyped terms).

Rodolphe Lepigre 7 / 34

Equality Types and Equivalence

We consider a new type zormer t� u (where t and u are untyped terms).

It is interpreted as:

� (the unit type) iz t and u are |equivalent},

� (the empty type) otherwise.

Rodolphe Lepigre 7 / 34

Equality Types and Equivalence

We consider a new type zormer t� u (where t and u are untyped terms).

It is interpreted as:

� (the unit type) iz t and u are |equivalent},

� (the empty type) otherwise.

Rodolphe Lepigre 7 / 34

dec. proc. says |yes}

� ; 	
 t :� 	
 u � u1 2

� ; 	
 t : u � u1 2

Equality Types and Equivalence

We consider a new type zormer t� u (where t and u are untyped terms).

It is interpreted as:

� (the unit type) iz t and u are |equivalent},

� (the empty type) otherwise.

Rodolphe Lepigre 7 / 34

dec. proc. says |yes}

� ; 	
 t :� 	
 u � u1 2

� ; 	
 t : u � u1 2

�, x :� ; 	 , u � u
 t : C1 2

�, x : u � u ; 	
 t : C1 2

Equality Types and Equivalence

We consider a new type zormer t� u (where t and u are untyped terms).

It is interpreted as:

� (the unit type) iz t and u are |equivalent},

� (the empty type) otherwise.

Remark: equivalence is undecidable.

Rodolphe Lepigre 7 / 34

dec. proc. says |yes}

� ; 	
 t :� 	
 u � u1 2

� ; 	
 t : u � u1 2

�, x :� ; 	 , u � u
 t : C1 2

�, x : u � u ; 	
 t : C1 2

Equality Types and Equivalence

We consider a new type zormer t� u (where t and u are untyped terms).

It is interpreted as:

� (the unit type) iz t and u are |equivalent},

� (the empty type) otherwise.

Remark: equivalence is undecidable.

Remark: decision oz equivalence only needs to be correct.

Rodolphe Lepigre 7 / 34

dec. proc. says |yes}

� ; 	
 t :� 	
 u � u1 2

� ; 	
 t : u � u1 2

�, x :� ; 	 , u � u
 t : C1 2

�, x : u � u ; 	
 t : C1 2

First-Order Quantification is not Enough

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

Rodolphe Lepigre 8 / 34

First-Order Quantification is not Enough

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m, add Zero m � m = {- ??? -}

Rodolphe Lepigre 8 / 34

First-Order Quantification is not Enough

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m, add Zero m � m = {}

// Immediate by definition

Rodolphe Lepigre 8 / 34

First-Order Quantification is not Enough

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m, add Zero m � m = {}

// Immediate by definition

val add_n_Zero : �n, add n Zero � n = {- ??? -}

Rodolphe Lepigre 8 / 34

First-Order Quantification is not Enough

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m, add Zero m � m = {}

// Immediate by definition

val add_n_Zero : �n, add n Zero � n = {- ??? -}

// Nothing we can do

Rodolphe Lepigre 8 / 34

First-Order Quantification is not Enough

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m, add Zero m � m = {}

// Immediate by definition

val add_n_Zero : �n, add n Zero � n = {- ??? -}

// Nothing we can do

We need a zorm oz typed quanti{cation!

Rodolphe Lepigre 8 / 34

Dependent Functions for Typed Quantification

val rec add_n_Zero : �n�nat, add n Zero � n =

fun n {

case n {

Zero � {}

S[p] � add_n_Zero p

}

}

Rodolphe Lepigre 9 / 34

Dependent Functions for Typed Quantification

val rec add_n_Zero : �n�nat, add n Zero � n =

fun n {

case n {

Zero � {}

S[p] � add_n_Zero p

}

}

Remark: we may inspect the elements oz the domain.

Rodolphe Lepigre 9 / 34

Dependent Functions for Typed Quantification

val rec add_n_Zero : �n�nat, add n Zero � n =

fun n {

case n {

Zero � {}

S[p] � add_n_Zero p

}

}

Remark: we may inspect the elements oz the domain.

Rodolphe Lepigre 9 / 34

�, x : A ; 	
 t : B

� ; 	
 �x.t : �x�A.B

Dependent Functions for Typed Quantification

val rec add_n_Zero : �n�nat, add n Zero � n =

fun n {

case n {

Zero � {}

S[p] � add_n_Zero p

}

}

Remark: we may inspect the elements oz the domain.

Rodolphe Lepigre 9 / 34

�, x : A ; 	
 t : B

� ; 	
 �x.t : �x�A.B

� ; 	
 t : �x�A.B � ; 	
 v : A

� ; 	
 t v : B[x� v]

Structuring Proofs with Dummy Programs

val rec add_n_Sm : �n m�nat, add n S[m] � S[add n m] =

fun n m {

case n {

Zero � {}

S[k] � add_n_Sm k m

}

}

val rec add_comm : �n m�nat, add n m � add m n =

fun n m {

case n {

Zero � add_n_Zero m

S[k] � add_n_Sm m k; add_comm k m

}

}

Rodolphe Lepigre 10 / 34

Part II

Formalisation of the System and Semantics

Rodolphe Lepigre 11 / 34

Realizability Model

We build a model to prove that the language has the expected properties.

Rodolphe Lepigre 12 / 34

Realizability Model

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax oz programs and types,

2) de{ne the interpretation oz types as sets oz terms (uses reduction),

3) de{ne adequate typing rules,

4) deduce termination, type safety and consistency.

Rodolphe Lepigre 12 / 34

Realizability Model

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax oz programs and types,

2) de{ne the interpretation oz types as sets oz terms (uses reduction),

3) de{ne adequate typing rules,

4) deduce termination, type safety and consistency.

Advantage: it is modular (contrary to type preservation).

Rodolphe Lepigre 12 / 34

Call-by-Value Abstract Machine

Rodolphe Lepigre 13 / 34

�� �seulaV w,v =::]v[Ck|})vi=l i(
I�i

{|t.x�|x

���smreT u,t =:: t]�[|t.��|])t i�]x i[Ci(
I�i

|v[|lk.v|u t|v

���skcatS �,� =::)txetnocnoitaulave(�]t[|�.v|�|�

sessecorP q,p =:: ��t

Call-by-value Reduction Relation

Rodolphe Lepigre 14 / 34

��u t � �]t[�u

�]t[�v � �.v�t

�.v�t.x� � ��]v�x[t

��lk.})vi=l i(
I�i

{ � ��vk �I�k�

��])t i�]x i[Ci(
I�i

|]v[Ck[� ��]v�xk[tk �I�k�

��t.�� � ��]���[t

��t]�[� ��t

Successful Computation and Observational Equivalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

Rodolphe Lepigre 15 / 34

Successful Computation and Observational Equivalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � v � � zor some value v (t � � � otherwise).

Rodolphe Lepigre 15 / 34

Successful Computation and Observational Equivalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � v � � zor some value v (t � � � otherwise).

(�x.x) {} � �� (�x.x x) (�x.x x) � �� (�x.t).l � ��1

Rodolphe Lepigre 15 / 34

Successful Computation and Observational Equivalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � v � � zor some value v (t � � � otherwise).

(�x.x) {} � �� (�x.x x) (�x.x x) � �� (�x.t).l � ��1

Dewnition: two terms are equivalent iz they converge in the same contexts.

Rodolphe Lepigre 15 / 34

Successful Computation and Observational Equivalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � v � � zor some value v (t � � � otherwise).

(�x.x) {} � �� (�x.x x) (�x.x x) � �� (�x.t).l � ��1

Dewnition: two terms are equivalent iz they converge in the same contexts.

� � � �� � 	
� = t , u | � � , t � � � � u � � � X�v

Rodolphe Lepigre 15 / 34

Successful Computation and Observational Equivalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).

�Dewnition: we write t � � � ifz t � � � v � � zor some value v (t � � � otherwise).

(�x.x) {} � �� (�x.x x) (�x.x x) � �� (�x.t).l � ��1

Dewnition: two terms are equivalent iz they converge in the same contexts.

� � � �� � 	
� = t , u | � � , �� , t� � � � � u� � � � X�v

Rodolphe Lepigre 15 / 34

Types as Sets of Canonical Values

� � � �Dewnition: a type A is interpreted as a set oz values A closed under � .

Rodolphe Lepigre 16 / 34

Types as Sets of Canonical Values

� � � �Dewnition: a type A is interpreted as a set oz values A closed under � .

Rodolphe Lepigre 16 / 34

�}A2:l2;A1:l1{� = �
X	�v
�A2

��v2�A1
��v1|}v2=l2;v1=l1{�

�]A2:C2|A1:C1[� = �
X	�v
�Ai

��v
2,1	�i|]v[Ci�

�A.X�� =
�]��X[A��

epyt�

�A.X�� =
�]��X[A��

epyt�

�A.x�� = �]t�a[A��
eulavv

�A.x�� = �]t�a[A��
eulavv

Membership Types and Dependency

We consider a new membership type t�A (with t a term, A a type).

� � � �	
It is interpreted as t�A = v � A | t � v ,

and allows the introduction oz dependency.

Rodolphe Lepigre 17 / 34

Membership Types and Dependency

We consider a new membership type t�A (with t a term, A a type).

� � � �	
It is interpreted as t�A = v � A | t � v ,

and allows the introduction oz dependency.

The dependent zunction type �x�A.B

is de{ned as �x.(x�A � B),

this is a zorm oz relativised quantizcation scheme.

Rodolphe Lepigre 17 / 34

Semantic Restriction Type and Equalities

We also consider a new restriction type A � P:

it is build using a type A and a |semantic predicate} P,

� � � � � �A � P is equal to A iz P is satis{ed and to � otherwise.

We can use predicates like t � u , ¬P or P Q.

Rodolphe Lepigre 18 / 34

Semantic Restriction Type and Equalities

We also consider a new restriction type A � P:

it is build using a type A and a |semantic predicate} P,

� � � � � �A � P is equal to A iz P is satis{ed and to � otherwise.

We can use predicates like t � u , ¬P or P Q.

The equality type t� u is encoded as � � t� u .

Rodolphe Lepigre 18 / 34

Interpretation of the Function Type

� � � � � �	
A � B = �x.w | � v � A , w[x� v] � B

Rodolphe Lepigre 19 / 34

Interpretation of the Function Type

� � � � � �	
A � B = �x.w | � v � A , w[x� v] � B

What about �-abstractions which bodies are terms?

Rodolphe Lepigre 19 / 34

Interpretation of the Function Type

� � � � � �	
A � B = �x.w | � v � A , w[x� v] � B

What about �-abstractions which bodies are terms?

��� � � �We de{ne a completion operation A � A .

Rodolphe Lepigre 19 / 34

Interpretation of the Function Type

� � � � � �	
A � B = �x.w | � v � A , w[x� v] � B

What about �-abstractions which bodies are terms?

��� � � �We de{ne a completion operation A � A .

��� � � �The set A contains terms |behaving} as values oz A .

Rodolphe Lepigre 19 / 34

Interpretation of the Function Type

� � � � � �	
A � B = �x.w | � v � A , w[x� v] � B

What about �-abstractions which bodies are terms?

��� � � �We de{ne a completion operation A � A .

��� � � �The set A contains terms |behaving} as values oz A .

��� � � � � �	
Dewnition: we take A � B = �x.t | � v � A , t[x� v] � B .

Rodolphe Lepigre 19 / 34

Pole and Orthogonality

��� �The de{nition oz A is parametrised by a set oz processes � � �×�.

Rodolphe Lepigre 20 / 34

Pole and Orthogonality

��� �The de{nition oz A is parametrised by a set oz processes � � �×�.

We require that p � � and q � p implies q � �.

Rodolphe Lepigre 20 / 34

Pole and Orthogonality

��� �The de{nition oz A is parametrised by a set oz processes � � �×�.

We require that p � � and q � p implies q � �.

Intuitively, � is a set oz processes that |behave well}.

Rodolphe Lepigre 20 / 34

Pole and Orthogonality

��� �The de{nition oz A is parametrised by a set oz processes � � �×�.

We require that p � � and q � p implies q � �.

Intuitively, � is a set oz processes that |behave well}.

	
The set � = p | p� is a good choice.

Rodolphe Lepigre 20 / 34

Pole and Orthogonality

��� �The de{nition oz A is parametrised by a set oz processes � � �×�.

We require that p � � and q � p implies q � �.

Intuitively, � is a set oz processes that |behave well}.

	
The set � = p | p� is a good choice.

Rodolphe Lepigre 20 / 34

�A� �
��w�w�v��v|� ��	

�A� � =
����v,�A��v�|���	

�A� �� =
����t,�A� ����|��t	

Value Restriction and Typing Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Rodolphe Lepigre 21 / 34

Value Restriction and Typing Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

Rodolphe Lepigre 21 / 34

Value Restriction and Typing Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

� ; 	
 v : A zor values only,val

� ; 	
 t : A zor terms (including values).

Rodolphe Lepigre 21 / 34

Value Restriction and Typing Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

� ; 	
 v : A zor values only,val

� ; 	
 t : A zor terms (including values).

Rodolphe Lepigre 21 / 34

� ; 	
 v : Aval

� ; 	
 v : A

Value Restriction and Typing Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).

Usual solution: |value restriction} on some typing rules.

This is encoded with two zorms judgments:

� ; 	
 v : A zor values only,val

� ; 	
 t : A zor terms (including values).

Rodolphe Lepigre 21 / 34

�, x : A ; 	
 x : Aval

�, x : A ; 	
 t : B

� ; 	
 �x.t : A � Bval

� ; 	
 v : Aval

� ; 	
 v : A

� ; 	
 t : A � B � ; 	
 u : A

� ; 	
 t u : B

Adequate Typing Rule

Theorem (adequacy lemma):
��� �iz
 t : A is derivable then t � A ,

� �iz
 v : A is derivable then v � A .val

Rodolphe Lepigre 22 / 34

Adequate Typing Rule

Theorem (adequacy lemma):
��� �iz
 t : A is derivable then t � A ,

� �iz
 v : A is derivable then v � A .val

Proof by induction on the typing derivation.

Rodolphe Lepigre 22 / 34

Adequate Typing Rule

Theorem (adequacy lemma):
��� �iz
 t : A is derivable then t � A ,

� �iz
 v : A is derivable then v � A .val

Proof by induction on the typing derivation.

We only need to check that our typing rules are |correct}.

Rodolphe Lepigre 22 / 34

Adequate Typing Rule

Theorem (adequacy lemma):
��� �iz
 t : A is derivable then t � A ,

� �iz
 v : A is derivable then v � A .val

Proof by induction on the typing derivation.

We only need to check that our typing rules are |correct}.

��
 v : Aval � � � �For example is correct since A � A .

 v : A

Rodolphe Lepigre 22 / 34

Adequacy of For All Introduction

� ; 	
 v : Aval X��
� ; 	
 v : �X.Aval

Rodolphe Lepigre 23 / 34

Adequacy of For All Introduction

X
 v : Aval

 v : �X.Aval

Rodolphe Lepigre 23 / 34

Adequacy of For All Introduction

X
 v : Aval

 v : �X.Aval

� � � �We suppose v � A[X��] zor all �, and show v � �X.A .

Rodolphe Lepigre 23 / 34

Adequacy of For All Introduction

X
 v : Aval

 v : �X.Aval

� � � �We suppose v � A[X��] zor all �, and show v � �X.A .

� � � �This is immediate since �X.A = A[X��] .��

Rodolphe Lepigre 23 / 34

Adequacy of For All Introduction

X
 v : Aval

 v : �X.Aval

� � � �We suppose v � A[X��] zor all �, and show v � �X.A .

� � � �This is immediate since �X.A = A[X��] .��

X
 t : A
bad

t : �X.A

Rodolphe Lepigre 23 / 34

Adequacy of For All Introduction

X
 v : Aval

 v : �X.Aval

� � � �We suppose v � A[X��] zor all �, and show v � �X.A .

� � � �This is immediate since �X.A = A[X��] .��

X
 t : A
bad

t : �X.A

�� ��� � � �We suppose t � A[X��] zor all �, and show t � �X.A .

Rodolphe Lepigre 23 / 34

Adequacy of For All Introduction

X
 v : Aval

 v : �X.Aval

� � � �We suppose v � A[X��] zor all �, and show v � �X.A .

� � � �This is immediate since �X.A = A[X��] .��

X
 t : A
bad

t : �X.A

�� ��� � � �We suppose t � A[X��] zor all �, and show t � �X.A .

���� ��� � � � � �� �However we have A[X��] �X.A = A[X��] .� �� �

Rodolphe Lepigre 23 / 34

Properties of the System

Theorem (normalisation):
�t : A implies t � � � v � � zor some value v.

Rodolphe Lepigre 24 / 34

Properties of the System

Theorem (normalisation):
�t : A implies t � � � v � � zor some value v.

Theorem (safety for simple datatypes):
�t : A implies t � � � v � � zor some value v : A .

Rodolphe Lepigre 24 / 34

Properties of the System

Theorem (normalisation):
�t : A implies t � � � v � � zor some value v.

Theorem (safety for simple datatypes):
�t : A implies t � � � v � � zor some value v : A .

Theorem (consistency):

there is no closed term t :�.

Rodolphe Lepigre 24 / 34

Part III

Semantical Value Restriction

Rodolphe Lepigre 25 / 34

Derived Rules for Dependent Functions

��x : A
 t : B a � x
 t : �a�A.B
 v : Aval

 �x.t : �a�A.B
 t v : B[a� v]val

Rodolphe Lepigre 26 / 34

Derived Rules for Dependent Functions

��x : A
 t : B a � x
 t : �a�A.B
 v : Aval

 �x.t : �a�A.B
 t v : B[a� v]val

 t : �a�A.B
 v : AvalDez �i

 t : �a.(a�A � B)
 v : v�Aval� �e

 t : v�A � B[a� v]
 v : v�A
�e

 t v : B[a� v]

Rodolphe Lepigre 26 / 34

Derived Rules for Dependent Functions

��x : A
 t : B a � x
 t : �a�A.B
 v : Aval

 �x.t : �a�A.B
 t v : B[a� v]val

 t : �a�A.B
 v : AvalDez �i

 t : �a.(a�A � B)
 v : v�Aval� �e

 t : v�A � B[a� v]
 v : v�A
�e

 t v : B[a� v]

Value restriction breaks the compositionality oz dependent zunctions.

// add_n_Zero : �n�nat, add n Zero � n

add_n_Zero (add Zero S[Zero]) : add (add Zero S[Zero]) Zero � add Zero S[Zero]

Rodolphe Lepigre 26 / 34

Semantical Value Restriction

 t : �a�A.B
 v : A
 t : �a�A.B
 u : A
 u � vvalWe replace by .

 t v : B[a� v]
 t u : B[a� u]

Rodolphe Lepigre 27 / 34

Semantical Value Restriction

 t : �a�A.B
 v : A
 t : �a�A.B
 u : A
 u � vvalWe replace by .

 t v : B[a� v]
 t u : B[a� u]

 v : A
 t : A
 t � vvalThis requires changing into .

 v : v�A
 t : t�Aval

Rodolphe Lepigre 27 / 34

Semantical Value Restriction

 t : �a�A.B
 v : A
 t : �a�A.B
 u : A
 u � vvalWe replace by .

 t v : B[a� v]
 t u : B[a� u]

 v : A
 t : A
 t � vvalThis requires changing into .

 v : v�A
 t : t�Aval

Can this rule be derived in the system?

Rodolphe Lepigre 27 / 34

Semantical Value Restriction

 t : �a�A.B
 v : A
 t : �a�A.B
 u : A
 u � vvalWe replace by .

 t v : B[a� v]
 t u : B[a� u]

 v : A
 t : A
 t � vvalThis requires changing into .

 v : v�A
 t : t�Aval

Can this rule be derived in the system?

 t : A
 t � v
�

 v : A

 v : Aval �i

 v : v�Aval �

 v : v�A
 t � v

�

 t : t�A

Rodolphe Lepigre 27 / 34

Biorthogonal Completion Closed for Values

 v : A
Everything goes down to having a rule .

 v : Aval

Rodolphe Lepigre 28 / 34

Biorthogonal Completion Closed for Values

 v : A
Everything goes down to having a rule .

 v : Aval

 v : AvalIt should not be conzused with .

 v : A

Rodolphe Lepigre 28 / 34

Biorthogonal Completion Closed for Values

 v : A
Everything goes down to having a rule .

 v : Aval

 v : AvalIt should not be conzused with .

 v : A

��� � � �Semantically, this requires that v � A implies v � A .

Rodolphe Lepigre 28 / 34

Biorthogonal Completion Closed for Values

 v : A
Everything goes down to having a rule .

 v : Aval

 v : AvalIt should not be conzused with .

 v : A

��� � � �Semantically, this requires that v � A implies v � A .

The biorthogonal completion should not introduce new values.

Rodolphe Lepigre 28 / 34

Biorthogonal Completion Closed for Values

 v : A
Everything goes down to having a rule .

 v : Aval

 v : AvalIt should not be conzused with .

 v : A

��� � � �Semantically, this requires that v � A implies v � A .

The biorthogonal completion should not introduce new values.

The rule seems reasonable, but it is hard to justizy semantically.

Rodolphe Lepigre 28 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

We extend the system with a new term constructor ! such thatv,w

! � � � v � � ifz v " w.v,w

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

We extend the system with a new term constructor ! such thatv,w

! � � � v � � ifz v " w.v,w

	
Idea oz the prooz with � = p | p� :

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

We extend the system with a new term constructor ! such thatv,w

! � � � v � � ifz v " w.v,w

	
Idea oz the prooz with � = p | p� :
��� � � �We assume v � A and show v � A .

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

We extend the system with a new term constructor ! such thatv,w

! � � � v � � ifz v " w.v,w

	
Idea oz the prooz with � = p | p� :
��� � � �We assume v � A and show v � A .

�� �We need to {nd � � A such that v � � �.

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

We extend the system with a new term constructor ! such thatv,w

! � � � v � � ifz v " w.v,w

	
Idea oz the prooz with � = p | p� :
��� � � �We assume v � A and show v � A .

�� �We need to {nd � � A such that v � � �.

� �We need to {nd � such that v � � � and �w � A , w � � �.

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

We extend the system with a new term constructor ! such thatv,w

! � � � v � � ifz v " w.v,w

	
Idea oz the prooz with � = p | p� :
��� � � �We assume v � A and show v � A .

�� �We need to {nd � � A such that v � � �.

� �We need to {nd � such that v � � � and �w � A , w � � �.

We can take � = [�x.!]�.x,v

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

We extend the system with a new term constructor ! such thatv,w

! � � � v � � ifz v " w.v,w

	
Idea oz the prooz with � = p | p� :
��� � � �We assume v � A and show v � A .

�� �We need to {nd � � A such that v � � �.

� �We need to {nd � such that v � � � and �w � A , w � � �.

We can take � = [�x.!]�.x,v

v � [�x.!]� � �x.! � v . � � ! � ��x,v x,v v,v

Rodolphe Lepigre 29 / 34

The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.

We extend the system with a new term constructor ! such thatv,w

! � � � v � � ifz v " w.v,w

	
Idea oz the prooz with � = p | p� :
��� � � �We assume v � A and show v � A .

�� �We need to {nd � � A such that v � � �.

� �We need to {nd � such that v � � � and �w � A , w � � �.

We can take � = [�x.!]�.x,v

v � [�x.!]� � �x.! � v . � � ! � ��x,v x,v v,v

� �w � [�x.!]� � �x.! � w. � � ! � � � w � �� iz w � Ax,v x,v w,v

Rodolphe Lepigre 29 / 34

Well-defined construction of equivalence and reduction

� � � �Problem: the de{nitions oz � and � are circular.

Rodolphe Lepigre 30 / 34

Well-defined construction of equivalence and reduction

� � � �Problem: the de{nitions oz � and � are circular.

We need to rely on a strati{ed construction oz the two relations.

� � � � � �� �� = � # ! �� , v �� | � j < i , v " wi v,w j

� � � �� �� = t , u | � j$ i , � � , �%, t%��� � u%���i j j

We then take

� � � � � � � �� = � and � = � .i� i�
i �� i ��

Rodolphe Lepigre 30 / 34

|Demo} (?) and Conclusion

Rodolphe Lepigre 31 / 34

Things That I did not Show

1) Syntax directed typing and subtyping rules using:

local subtyping judgments oz the zorm t � A & B,

choice operators like � (t �B) or � (t �A),x�A X

an encoding oz |neutral terms} into reduction.

2) Inductive types, coinductive types and recursion (more recent) using:

circular typing and subtyping proozs,

well-zoundedness established using the si{e change principle.

3) Unreachable code and rezutation oz patterns.

Rodolphe Lepigre 32 / 34

Future Work

Practical issues (work in progress):

Composing programs that are proved terminating.

Extensible records and variant types (inzerence).

Toward a practical language:

Compiler using typing inzormations zor optimisations.

Built-in types (int64, �oat) with their speci{cation.

Theoretical questions:

Can we handle more side-efzects? (mutable cells, arrays)

What can we realise with (variations oz) ! ?v,w

Can we extend the system with quotient types?

Can we zormalise mathematics in the system?

Rodolphe Lepigre 33 / 34

References for Technical Details

A Classical Reali{ability Model for a Semantical Value Restriction

R. Lepigre (ESOP 2016)

https://lepigre.zr/{les/docs/lepigre2016_svr.pdz

Practical Subtyping for Curry-Style Languages

R. Lepigre and C. Rafzalli (submitted to TOPLAS)

https://lepigre.zr/{les/docs/lepigre2017_subml.pdz

Semantics and Implementation of an Extension of ML for Proving Programs

R. Lepigre, PhD manuscript

http://lepigre.zr/{les/docs/phd.pdz

Rodolphe Lepigre 34 / 34

Thanks!

