
The PML Language:
Realizability at the Service of Program Proofs

Rodolphe Lepigre
Realizability workshop { 08/03/2018 { Marseille



Using OCaml as a Proof System: A Silly Idea?

(* Empty type (logical absurdity). *)

type empty = { empty : 'a. 'a }

(* Logical negation. *)

type 'a neg = 'a � empty

(* The law of the excluded middle. *)

type 'a excluded_middle =

| True of 'a

| False of 'a neg
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type empty = { empty : 'a. 'a }

(* Logical negation. *)

type 'a neg = 'a � empty

(* The law of the excluded middle. *)

type 'a excluded_middle =

| True of 'a

| False of 'a neg

(* The law of the excluded middle implies double negation elimination. *)

let proof : 'a excluded_middle � 'a neg neg � 'a = fun em h �

match em with

| True a � a

| False not_a � (h not_a).empty
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Toward a Programming Language, with Program Proving Features

An ML-like programming language with:

records, variants (constructors), ,

polymorphism, ,

a call-by-value evaluation strategy,

efzects (control operators),

a Curry-style syntax (light) and .
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Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }
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Example of Program and Proof

type rec nat = [Zero ; S of nat]

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m�nat, add Zero m � m =

fun m { {} }

val rec add_n_Zero : �n�nat, add n Zero � n =

fun n {

case n {

Zero � {}

S[p] � add_n_Zero p

}

}
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Part III Specificities of the Type System

Part III Formalisation of the System and Semantics

Part III Semantical Value Restriction
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Part I

Specificities of the Type System
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Properties as Program Equivalences

Examples oz (equational) program properties:

add (add m n) k � add m (add n k) (associativity oz add)

rev (rev l) � l (rev is an involution)

map g (map f l) � map (fun x {g (f x)}) l (map and composition)

sort (sort l) � sort l (sort is idempotent)
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add (add m n) k � add m (add n k) (associativity oz add)

rev (rev l) � l (rev is an involution)

map g (map f l) � map (fun x {g (f x)}) l (map and composition)

sort (sort l) � sort l (sort is idempotent)

Speci{cation oz a sorting zunction using predicates:

is_increasing (sort l) � true (sort produces a sorted list)

is_perm (sort l) l � true (sort yields a permutation)
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Equality Types and Equivalence

We consider a new type zormer t � u (where t and u are untyped terms).
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Equality Types and Equivalence

We consider a new type zormer t � u (where t and u are untyped terms).

It is interpreted as:

� (the unit type) iz t and u are |equivalent},

� (the empty type) otherwise.

Remark: equivalence is undecidable.

Remark: decision oz equivalence only needs to be correct.
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First-Order Quantification is not Enough

val rec add : nat � nat � nat =

fun n m { case n { Zero � m | S[k] � S[add k m] } }

val add_Zero_m : �m, add Zero m � m = {}

// Immediate by definition

val add_n_Zero : �n, add n Zero � n = {- ??? -}

// Nothing we can do

We need a zorm oz typed quanti{cation!
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Dependent Functions for Typed Quantification

val rec add_n_Zero : �n�nat, add n Zero � n =

fun n {

case n {

Zero � {}

S[p] � add_n_Zero p

}

}
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�, x : A ; 	 
 t : B

� ; 	 
 �x.t : �x�A.B

� ; 	 
 t : �x�A.B � ; 	 
 v : A

� ; 	 
 t v : B[x� v]



Structuring Proofs with Dummy Programs

val rec add_n_Sm : �n m�nat, add n S[m] � S[add n m] =

fun n m {

case n {

Zero � {}

S[k] � add_n_Sm k m

}

}

val rec add_comm : �n m�nat, add n m � add m n =

fun n m {

case n {

Zero � add_n_Zero m

S[k] � add_n_Sm m k; add_comm k m

}

}
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Part II

Formalisation of the System and Semantics
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Realizability Model

We build a model to prove that the language has the expected properties.
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Realizability Model

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

1) give the syntax oz programs and types,

2) de{ne the interpretation oz types as sets oz terms (uses reduction),

3) de{ne adequate typing rules,

4) deduce termination, type safety and consistency.

Advantage: it is modular (contrary to type preservation).
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Call-by-Value Abstract Machine
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Call-by-value Reduction Relation

Rodolphe Lepigre 14 / 34

��u t � �]t[�u

�]t[�v � �.v�t

�.v�t.x� � ��]v�x[t

��lk.})vi=l i(
I�i

{ � ��vk �I�k�

��])t i�]x i[Ci(
I�i

|]v[Ck[ � ��]v�xk[tk �I�k�

��t.�� � ��]���[t

��t]�[ � ��t



Successful Computation and Observational Equivalence

The abstract machine may either:

successzully compute a result (it converges),

zail with a runtime error or never terminate (it diverges).
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Types as Sets of Canonical Values

� � � �Dewnition: a type A is interpreted as a set oz values A closed under � .
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Membership Types and Dependency

We consider a new membership type t�A (with t a term, A a type).

� � � �	 
It is interpreted as t�A = v � A | t � v ,

and allows the introduction oz dependency.
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Membership Types and Dependency

We consider a new membership type t�A (with t a term, A a type).

� � � �	 
It is interpreted as t�A = v � A | t � v ,

and allows the introduction oz dependency.

The dependent zunction type �x�A.B

is de{ned as �x.(x�A � B),

this is a zorm oz relativised quantizcation scheme.
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Semantic Restriction Type and Equalities

We also consider a new restriction type A � P:

it is build using a type A and a |semantic predicate} P,

� � � � � �A � P is equal to A iz P is satis{ed and to � otherwise.

We can use predicates like t � u , ¬P or P 
 Q.
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We also consider a new restriction type A � P:

it is build using a type A and a |semantic predicate} P,

� � � � � �A � P is equal to A iz P is satis{ed and to � otherwise.

We can use predicates like t � u , ¬P or P 
 Q.

The equality type t � u is encoded as � � t � u .
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Interpretation of the Function Type

� � � � � �	 
A � B = �x.w | � v � A , w[x� v] � B
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Interpretation of the Function Type

� � � � � �	 
A � B = �x.w | � v � A , w[x� v] � B

What about �-abstractions which bodies are terms?

��� � � �We de{ne a completion operation A � A .

��� � � �The set A contains terms |behaving} as values oz A .

��� � � � � �	 
Dewnition: we take A � B = �x.t | � v � A , t[x� v] � B .
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Pole and Orthogonality

��� �The de{nition oz A is parametrised by a set oz processes � � �×�.
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Value Restriction and Typing Judgments

Combining call-by-value and efzects leads to soundness issues (well-known).
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�, x : A ; 	 
 x : Aval

�, x : A ; 	 
 t : B

� ; 	 
 �x.t : A � Bval
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 v : Aval
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 u : A

� ; 	 
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Adequate Typing Rule

Theorem (adequacy lemma):
��� �iz 
 t : A is derivable then t � A ,

� �iz 
 v : A is derivable then v � A .val
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Adequate Typing Rule

Theorem (adequacy lemma):
��� �iz 
 t : A is derivable then t � A ,

� �iz 
 v : A is derivable then v � A .val

Proof by induction on the typing derivation.

We only need to check that our typing rules are |correct}.

��
 v : Aval � � � �For example is correct since A � A .

 v : A

Rodolphe Lepigre 22 / 34



Adequacy of For All Introduction

� ; 	 
 v : Aval X��
� ; 	 
 v : �X.Aval
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X 
 t : A
bad


t : �X.A

�� ��� � � �We suppose t � A[X��] zor all �, and show t � �X.A .

���� ��� � � � � �� �However we have A[X��]  �X.A = A[X��] .� �� �
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Properties of the System

Theorem (normalisation):
�t : A implies t � � � v � � zor some value v.
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Theorem (consistency):

there is no closed term t : �.
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Part III

Semantical Value Restriction
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Derived Rules for Dependent Functions

��x : A 
 t : B a � x 
 t : �a�A.B 
 v : Aval


 �x.t : �a�A.B 
 t v : B[a� v]val
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 v : AvalDez �i


 t : �a.(a�A � B) 
 v : v�Aval� �e


 t : v�A � B[a� v] 
 v : v�A
�e


 t v : B[a� v]

Value restriction breaks the compositionality oz dependent zunctions.

// add_n_Zero : �n�nat, add n Zero � n

add_n_Zero (add Zero S[Zero]) : add (add Zero S[Zero]) Zero � add Zero S[Zero]
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Semantical Value Restriction


 t : �a�A.B 
 v : A 
 t : �a�A.B 
 u : A 
 u � vvalWe replace by .

 t v : B[a� v] 
 t u : B[a� u]
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Biorthogonal Completion Closed for Values


 v : A
Everything goes down to having a rule .


 v : Aval
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Biorthogonal Completion Closed for Values


 v : A
Everything goes down to having a rule .


 v : Aval


 v : AvalIt should not be conzused with .

 v : A

��� � � �Semantically, this requires that v � A implies v � A .

The biorthogonal completion should not introduce new values.

The rule seems reasonable, but it is hard to justizy semantically.
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The New Instruction Trick

��� � � �We do not have v � A implies v � A in every reali~ability model.
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v � [�x.! ]� � �x.! � v . � � ! � ��x,v x,v v,v
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Well-defined construction of equivalence and reduction

� � � �Problem: the de{nitions oz � and � are circular.
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Well-defined construction of equivalence and reduction

� � � �Problem: the de{nitions oz � and � are circular.

We need to rely on a strati{ed construction oz the two relations.

� � � � � �� �� = � # ! �� , v � � | � j < i , v " wi v,w j

� � � �� �� = t , u | � j$ i , � � , �%, t% ��� � u%���i j j

We then take

� � � � � � � �� = � and � = � .i� i�
i �� i ��
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|Demo} (?) and Conclusion
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Things That I did not Show

1) Syntax directed typing and subtyping rules using:

local subtyping judgments oz the zorm t � A & B,

choice operators like � (t � B) or � (t �A),x�A X

an encoding oz |neutral terms} into reduction.

2) Inductive types, coinductive types and recursion (more recent) using:

circular typing and subtyping proozs,

well-zoundedness established using the si{e change principle.

3) Unreachable code and rezutation oz patterns.
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Future Work

Practical issues (work in progress):

Composing programs that are proved terminating.

Extensible records and variant types (inzerence).

Toward a practical language:

Compiler using typing inzormations zor optimisations.

Built-in types (int64, �oat) with their speci{cation.

Theoretical questions:

Can we handle more side-efzects? (mutable cells, arrays)

What can we realise with (variations oz) ! ?v,w

Can we extend the system with quotient types?

Can we zormalise mathematics in the system?
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Thanks!


