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Context: using realizability for programming languages

Last year's talk was about the PML language:
> A simple but powerful mechanism for program certification
» It is embedded in a (fairly standard) ML-style language
> Everything is backed by a (classical) realizability semantics
» Property: v € ¢+ = v € ¢ for all ¢ closed under (=)

Today's talk is about making Curry-style quantifiers practical:
> They are essential for PML (polymorphism, dependent types)
> But pose a practical issue due to non-syntax-directed rules
> Restricting quantifiers (prenex polymorphism) is not an option

> Contribution: a solution with subtyping inspired by semantics

In this talk we will stick to System F for simplicity
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Quick reminder: Church-style versus Curry-style

Church-style System F:

MNx:AFt:B
Fx:AFx:A M-Mx:At:A=B
lNFt:A=B N-u:A
tu:B
NrEt:A X¢r Mr-t:vX.A
M AX. t:VX.A M=t B : A[X := B]

Curry-style System F is obtained by removing the highlighted parts
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A natural idea: using subtyping

We define a relation (C) on types and use rule:

N-t:A ACB

Mr-t:B
This does help a bit already:
ACC A=BCC TI,x:A+t:B
Mx:AFx:C MN=Ax.t:C

l~-t:A=B Nu:A
tu:B

Ideally we would want quantifiers to be handled by subtyping
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Containment system [Mitchell]

Is standard containment enough?

(Y1, .. YO FV(YXy ... VX,.A) = @
VX1 VXp A C YY1 YYmAXL = Bi,..., Xn = By

VX1.. VX A= B C (VX1...VXp.A) = (VX1 ... VX,.B)

A2 C A B C B
A1:>Bl C A2:>BQ

N
Aa
>

N
A ®
NN

VX.A vX.B
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Can we derive the quantifier rules?

Yes we can derive the elimination rule:
GNFV(VX.A) =0
MPEVXA s Lt vxA VXACAX =B
FrEt:AX:=B] R ACAX =B
Me=t:AX := B

No we cannot derive the introduction rule:

277
FtiA X¢ET o L, 4 ACVYXA
FEt:YXA

M-t:vX.A
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Let us take a step back...

All we want is adequacy:
> If -t : Alis derivable then t € [A]
> If AC B then [A] C [B]

The subtyping part is not as fine-grained as it could be:

Ft:A ACB Ft:A Ft:ACB
can be replaced by
Ft:B Ft:B

Local subtyping is interpreted as an implication
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Approach 1

(inspired by semantics)
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Main idea of the approach

Based on a fine-grained semantic analysis we:
> Get rid of context and only work with closed terms
P To this aim terms are extended with choice operators

> The same kind of trick is used for quantifiers in types

Theorem (Adequacy)

» Ift: A is derivable then [t] € [A]
» Ift: AC B is derivable and [t] € [A] then [t] € [B]

Terms are interpreted using “pure terms”
(satisfying the intended semantic property)
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Typing and subtyping rules
Syntax-directed typing rules:

exea(t ¢ B): ACC t:A=B u:A
exca(t ¢ B): C tu:B

Mx.t:A=BCC tlx:=cxea(t¢ B)]: B
Ax.t: C

Syntax-directed (local) subtyping rules:
t:AlX :=C]|CB t: AC B[X :=ex(t ¢ B)]
t:VX.ACB t: ACVX.B

t:ACA

ExeAz(tX ¢ 82) A C A t EXEAQ(t X ¢ 82) B C B
t:Ai=B CA=5
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Interpretation of terms and types

We interpret terms using “pure terms" (without choice operators)
[x] = x [Ax.t] = Ax.[t] [t u] = [t] [u]
eoa(t ¢ BY] — {u € [A] s.t. [t[x := u]] € [B] if it exists

any t € Ny otherwise

We interpret types as (saturated) sets of normalizing terms
[¢] = ¢ [A= B] =[A] = [B] [VX.A] = Neer[A[X := @]]

® € F such that [t] ¢ [A[X := ®]] if it exists
N otherwise

[ex(t & A) = {

P=V = {t|Vued tuecV}
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Let us look at one case of the adequacy lemma

Mx.t:A=BCC tlx:=cxen(t¢ B)]: B
Ax.t:C

u € [A] s.t. [t[x:=u]] ¢ [B] if it exists
any t € Np otherwise

[exea(t” ¢ B)] = {
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Approach 2

(using syntactic translations)
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A more standard type system

Syntax-directed typing rules:

MMx:AFx:ACC rt:A=B TFru:A
Mx:AFx:C N-tu:B

lN=Xxt:A=BCC I,x:A+t:B
MN=Xx.t: C

Syntax-directed (local) subtyping rules:

Nt AIX:=C]CB r-t:ACB X¢r
N-t:vX.ACB N-t:ACVX.B

N-t:ACA

Mx:AFx:ACA [IHx:AFtx:B CB
[Ft:A =B CA=058

14/18



Elimination of subtyping: translation to System F+n
System F+7 is obtained by adding the rule:

N-Xxtx:A=B x¢t
-t:A=_B

Theorem (Translation to F+1)

> IfT  t: A s derivable then it is also derivable in System F+n

> IfT+t:AC B isderivable then T - t : B is derivable in System F+n given a
derivation of Tt : A

Translation of subtyping leads to a “piece of proof”:
Nt A
If T+ t:AC Bis derivable then we get a1
l=t: B
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The most interesting case (arrow subtyping rule)

Mx:AkFx:ACA I,x:Arttx:BCB
TFt:Al=B1CA =5

Mx:AkFx: A
Fr-t:A = B My
x fresh :
Mx:AFt:Ai=B Mx:AFx: A
Mx:AkFtx: B
1,
MNx:AkFtx: B
N Ax.tx: A= B, xé&t

lrFt:A =B
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Translation from System F+n

Given the subsumption rule the translation is immediate

lrN-t:A T+t:ACB
~t:B

A couple of remarks:
> We conjecture that subsumption is admissible
» The rule is useful anyway for ascription (rule below)

» (Remember that type-checking remains undecidable here)

r-t:A r+t:ACB
r-(t:A):B
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Thanks! Questions?

@ https://lepigre.fr
X lepigre@mpi-sws.org
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