
A Call-by-Value Realizability Model
with Equivalence (and Subtyping)

for PML

Logic and Semantics Seminar - Cambridge 26/02/2016

Rodolphe Lepigre - Université Savoie Mont Blanc

Type system Value restriction Call-by-value semantics Semantical value restriction

What does PML stands for?

Obviously, ML stands for ML.

We are not so sure about the P yet...

Some ideas:

pedestrian,

perverted,

phantasmagoric,

pleasurable,

presumptuous,

...

Full list at http://adjectivesstarting.com/with-p/.

Type system Value restriction Call-by-value semantics Semantical value restriction

PML is a programming language

PML is similar to OCaml or SML:

call-by-value evaluation,

ML-like polymorphism,

Curry-style syntax (no types in terms),

eêfects.

Example of program:

type rec nat = Zero | Succ of nat

val rec add n m =

match n with

| Zero -> m

| Succ nn -> Succ (add nn m)

Type system Value restriction Call-by-value semantics Semantical value restriction

1 / 25

PML is a proof system

The mechanism for program proving relies on:

equational reasoning (equivalence of programs),

dependent product type (�-type).

The system follows the ëprogram as proofì principle.

(As opposed to the ëproof as programì principle.)

Ultimate goal: formalization of mathematics (untyped terms as objects).

Type system Value restriction Call-by-value semantics Semantical value restriction

2 / 25

Why another proof system?

We want a programing language centered system:

an efícient, convenient programming language (ML),

in which properties of programs can be proved (occasionally),

in the same (programming) language.

Proofs can be composed with programs (i.e. tactics).

Other systems:

in Coq the proof-terms are hidden behind tactics,

in Agda the syntax of proof-terms is limited,

in HOL light, HOL, Isabelle/HOL there are no proof-terms,

in Why3 proofs are not programs.

Type system Value restriction Call-by-value semantics Semantical value restriction

3 / 25

Part 1

The type system of PML

Type system Value restriction Call-by-value semantics Semantical value restriction

4 / 25

Starting point: ML

Three base types:

function type A � B,

� �product (record) type l : A , � , l : A ,1 1 n n

��sum (variant) type C of A | � | C of A ,1 1 n n

���� and are ëunitì and the empty type.

Eêfects:

��syntax of the �� -calculus (�� t , � t),

access to the evaluation context,

future work: references.

Polymorphism (universal quantiíer).

� �� � � ��x �y fst = x ; snd = y : �X �Y X � Y � fst : X ; snd : Y

Type system Value restriction Call-by-value semantics Semantical value restriction

5 / 25

Terms as individuals

Equality types t 	 u and t
 u :

interpreted with observational equivalence,

t and u are (possibly untyped) terms,

��these types are equivalent to when the equivalence is true

��and to when it is false.

First-order quantiícation:

� �� � v : A a FV � � � t : �a A

� � v : �a A ��� � t : A a � u

Example:

� �� : �n Succ n
 Zero .

Type system Value restriction Call-by-value semantics Semantical value restriction

6 / 25

Working with equality

Automatic decision procedure for t 	 u :

� �not decidable since 	 contains function extensionality,

the term can be introduced when an equivalence can be derived.

� � t 	 u � � t
 u

� � : t 	 u � � : t
 u

Example:
�add Zero x 	 x

� �� : add Zero x 	 x x FV �
� �� : �x add Zero x 	 x

Type system Value restriction Call-by-value semantics Semantical value restriction

7 / 25

Dependent product type

We want to be able to prove properties of typed terms.

The system includes a �-type.

���, x : A � t : B a � x � � t : � B � � v : Aa : A

� � �x t : � B ��� � t v : B a � va : A

Example:
x : � � add Zero x 	 x

x : � � : add Zero x 	 x

��x : � add Zero n 	 nn :�

PML proof of � addn Zero 	 n :n :�

Y �r�x case x of Zero � | Succ y � r y

Type system Value restriction Call-by-value semantics Semantical value restriction

8 / 25

Soundness issue

Care should be taken when combining:

call-by-value evaluation,

side-eêfects (references, control operators...),

polymorphism.

The problem extends to the �-type.

Some typing rules cannot be proved safe:

� �� � t : A X FV � � � t : � B � � u : Aa : A

� � t : �X A ��� � t u : B a � u

Value restrictionType system Call-by-value semantics Semantical value restriction

9 / 25

Counter-example

If we extend a pure ML language with references:

val ref : 'a -> 'a ref

val (!) : 'a ref -> 'a

val (:=) : 'a ref -> 'a -> unit

The following program is accepted:

let r = ref [] in

r := [true];

42 + (List.hd !r)

A more complex counter-example is required with control operators.

Value restrictionType system Call-by-value semantics Semantical value restriction

10 / 25

Value restriction

The problem can be solved by restricting some rules to values:

� �� � v : A X FV � � � t : � B � � v : Aa : Av value v value

� � v : �X A ��� � t v : B a � v

Equivalently we may consider having two forms of judgements:

� � t : A where t is an arbitrary term (maybe a value),

� � v : A where v can only be a value.val

The rules become the following.

� �� � v : A X FV � � � t : � B � � v : Aval a : A val

� � v : �X A ��� � t v : B a � vval

� � v : AvalRemark: we need an extra rule: .
� � v : A

Value restrictionType system Call-by-value semantics Semantical value restriction

11 / 25

Is value restriction satisfactory?

We can cope with value restriction for polymorphism.

Value restriction is too restrictive on the �-type.

� � t : � B � � v : Aa : A val

��� � t v : B a � v

We cannot apply �x : � add Zero n 	 n to 2×21 (which is not a value).n :�

We need to relax value restriction:

�, u 	 v � t : � B �, u 	 v � u : Aa : A

���, u 	 v � t u : B a � u

Remark: we do not encode A � B using the �-type.

Value restrictionType system Call-by-value semantics Semantical value restriction

12 / 25

Part 2

A realizability model for PML

Call-by-value semanticsType system Value restriction Semantical value restriction

13 / 25

Syntax and Krivine machine

Values, terms and stacks:

The state of the machine is a process t �� .

Call-by-value semantics

w

Type system Value restriction Semantical value restriction

,v 	 |�vi=l i�
I�i

|�v�C|tx�|x

u,t 	 �t i��x�Ci�
I�i

fovesac|l.v|t���|t��|ut|v|a

� 	 ��t�|��v|�

14 / 25

Operational semantics

Call-by-value semantics

�

Type system Value restriction Semantical value restriction

�ut
 ��t��u

��t��v
 ��v�t

��v��tx��
 ���v�x�t
��t��
 �������t
��t���
 ��t

���t i��x�Ci�
I�i

fo�v�Ckesac
 ���v�x�tk

��lk.�vi=l i�
I�i
 ��vk

15 / 25

Interpretation of types

Three levels of interpretation:

� �raw semantics A ,

� �� � falsity value A = � | �v � A , v �� � � ,

� � � �truth value A = t | �� � A , t �� � � .

Here, � is a set of well-behaved processes.

� �� = t � � | �v �V, t � �
 v ���

Call-by-value semanticsType system Value restriction Semantical value restriction

16 / 25

Raw semantics

� �Remark: the type � B is encoded as �a a � A � B .a : A

Call-by-value semantics

�

Type system Value restriction Semantical value restriction

B�A� � ��B���v�x�t�A��v�|tx��
��Ai:l i�
I�i

� � ��Ai
��vi,I�i�|�vi=l i�

I�i
�

��AifoCi�
I�i

� � ��Ai
��v|�v�Ci�� I�i

�Aa�� � ��t�a�A�� �c�t

�Aa�� � ��t�a�A�� �c�t

�u	t� � esiwrehto�=����dnau	tnehw����
�A�t� � �t	v|�A��v�

17 / 25

Soundness

Theorem (Adequacy Lemma):

� �if t is a term such that �t : A then t � A ,

� �if v is a value such that � v : A then v � A .val

� � � �Remark: A � A by deínition.

Intuition: a typed program behaves well (in any well-typed evaluation context).

Call-by-value semanticsType system Value restriction Semantical value restriction

18 / 25

Observational equivalence

Two programs are equivalent if they behave the same on every input.

We deíne the equivalence of t and u as:

�� t � � behaves well � u � � behaves well .

Required properties for the equivalence:

� �� �extensionality (if v 	 w then t x � v 	 t x � w),

� � � �if v � A and v 	 w then w � A .

� �� ��, v 	 w � t x � v : A �, v 	 w � t : A x � v

� �� ��, v 	 w � t x � w : A �, v 	 w � t : A x � w

Call-by-value semanticsType system Value restriction Semantical value restriction

19 / 25

Implementation of the decision procedure

� �We derive rules from the deínition of 	 :

� � ���x t v 	 t x � v ,

� ��l = v� .l 	 v,

� �� �C v
 D w if C � D,

...

Pseudo-decision algorithm for equivalence:

efíciency is critical (bottleneck in írst implementation),

data structure: graph with maximal sharing (union índ),

proof by contradiction,

we can only approximate equivalence,

the user can help by giving hints.

Call-by-value semanticsType system Value restriction Semantical value restriction

20 / 25

Relaxing value restriction

With value restriction, some rules are restricted to values.

Idea: a term that is equivalent to a value may be considered a value.

Informal proof:

�, t 	 v � t : A

� ��, t 	 v � v : A a FV �
�, t 	 v � v : �a A

�, t 	 v � t : �a A

Semantical value restrictionType system Value restriction Call-by-value semantics

21 / 25

Semantical value restriction

� � � �In every realizability model A � A .

� � v : Aval �This provides a semantical justiícation to the rule .
� � v : A

� � v : A� � �� �We need to have A � � � A to obtain the rule .
� � v : Aval

With this rule we can liît the value restriction to the semantics.

�, t 	 v � t : A
	

�, t 	 v � v : A � � ��, t 	 v � v : A a FV �val �e
�, t 	 v � v : �a Aval �
�, t 	 v � v : �a A

	
�, t 	 v � t : �a A

Semantical value restrictionType system Value restriction Call-by-value semantics

22 / 25

The new instruction trick

� �� �The property A � � � A is not true in every realizability model.

To obtain it we extend the system with a new term constructor � .v,w

We will have � ��
 v �� if and only if v
 w.v,w

Idea of the proof:

� � � �suppose v A and show v A ,

� �we need to índ � such that v �� � and �w � A , w�� � �,

��we can take � = �x � �,x,v

��v � �x � �
 �x � � v.�
 � ��,x,v x,v v,v

��w� �x � �
 �x � �w.�
 � ��
 w��.x,v x,v w,v

Semantical value restrictionType system Value restriction Call-by-value semantics

23 / 25

Stratized reduction and equivalence

� � � �Problem: the deínitions of
 and 	 are circular.

We need to rely on a stratiíed construction of the two relations

� � � � � �� �� =
 � �� , v � � | �j < i , v
 wi v,w j

� � � �� �	 = t , u | �j! i , �� �� , �", t"��� � u"���i j j

We then take

� � � � � � � �� = � 	 = 	i# i$
i �� i ��

� �With these deínitions, 	 is indeed extensional...

Semantical value restrictionType system Value restriction Call-by-value semantics

24 / 25

Current and future work

Subtyping without coercions (almost ínished):

useful for programming (modules, classes...),

provide injections between types for free,

� � � �judgement �A � B interpreted as A � B in the semantics.

Recursion and (co-)inductive types (in progress):

the types �XA and %XA will be handled by subtyping,

we need to extend the language with a íxpoint,

termination needs to be ensured to preserve soundness.

Theoretical investigation (for later):

can we use � to realize new formulas,v,w

how do we encode real maths in the system?

Type system Value restriction Call-by-value semantics Semantical value restriction

25 / 25

Thank you!

http://patoline.org

Type system Value restriction Call-by-value semantics Semantical value restriction

	
	Type system
	Value restriction
	Call-by-value semantics
	Semantical value restriction

