Prophecy Variables in Separation Logic
(Extending Iris with Prophecy Variables)

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy,
Marianna Rapoport, Amin Timany, Derek Dreyer, Bart Jacobs

N
2 MAX PLANCK INSTITUTE
O [OR SOFTWARE SYSTEMS

——J

1/18

What is Iris?l What are prophecy variables?!

The Iris framework:
» Higher-order concurrent separation logic framework in Coq
(developed at MPI-SWS and elsewhere)

» Deployed in many verification projects (e.g., Rustbelt)
> Great for verifying tricky concurrent programs

Prophecy variables:
» Old idea introduced by Abadi and Lamport (1991)

> Lets you “peek into the future” of a program'’s execution
when reasoning about an earlier step in the program

» Never formally integrated into Hoare logic before!!!

2/18

Our contribution: Prophecy variables for Iris

First integration of prophecy variables to Hoare logic!
» There was an informal treatment in Vafeiadis's thesis

» We discovered a flaw in proof of his key example (RDCSS)

Key idea of our approach:
> Model the right to resolve a prophecy as an ownable resource

> Leverage separation logic to easily ensure soundness

Implementation in Iris:
» Everything is formally verified in Coq
» Including key examples (RDCSS, Herlihy-Wing queues)

3/18

Part | — separation logic and prophecy variables

4/18

Resources and ownership

The notion of resource is pervasive:
> File system handle, memory location, permission...

» A resource should not be used concurrently
(but this can sometimes be relaxed)

» In Iris they are expressed in terms of resource algebras
(user-defined structures called cameras)

Examples of resource ownership:

» (— v (exclusive ownership of a location /)

» ¢ v (“read only” (fractional) ownership of a location /)

» Proph(p, v) (exclusive right to resolve prophecy p)

5/18

Separation logic (Iris base logic)

Separating conjunction P x Q:

» The resources are split in disjoint parts
satisfying P and Q respectively

> /1 vi x> — vo can only be valid if 1 # 05
> ¢ vy xf— v is a contradiction

» The magic wand P = Q is a form of implication

Other logical connectives for building Iris propositions:
» Conjunction P A Q, disjunction PV Q...

> Universal and existential quantifiers

» Ownership of a resource |a: M1’ (and related connectives)

L J

> Persistence modality (1 P, later modality > P...

6/18

Hoare triples (and weakest preconditions)

We use Hoare triples {P} e {x.Q} for specifications:
» The (potential) result of evaluating e is bound in @
> Evaluation of e is safe in a state satisfying P
> If a value is reached the corresponding state and value satisfy @
>

Defined in terms of weakest preconditions:

{P}e{x.Q} £ O(P -« wp e{x.Q})

Weakest preconditions are encoded using the base logic!

7/18

Example of specification: eager coin

We consider a specification for a “coin’:
> A coin is only ever tossed once

> Reading its value always gives the same result
{True} new_coin() {x. 3c. Ib. x = c A Coin(c, b)}
{Coin(c, b)} read_coin(c) {x. x = b A Coin(c, b)}
Simple (eager) implementation:

c— b

Coin(c, b)

new_coin() £ ref(nondet bool())

read_coin(c) le

8/18

A lazy coin implementation

What if we want to flip the coin as late as possible?

new_coin() £ ref(None)

read_coin(c) £ match!cwith
Some(b) = b
| None = let b = nondet bool();

¢ < Some(b); b
end

To keep the same spec we need prophecy variables

9/18

Specification of the prophecy variables operations

Prophecy variables are used through two ghost code instructions
> NewProph creates a new prophecy variable

> Resolve pto v resolves prophecy variable p to value v
{True} NewProph {p. Iv. Proph(p, v)}

{Proph(p, v)}Resolveptow {x. x = () A v =w}

Principles of prophecy variables in speration logic:

> The future is ours
Proph(p, v) gives exclusive right to resolve p

» We must fulfill our destiny
A prophecy can only be resolved to the predicted value

10/18

Back to the lazy coin implementation

new_coin() £ let r = ref(None);
let p = NewProph;
{val = r, proph = p}

read_coin(c) £ match!c.valwith
Some(b) = b
| None = let b = nondet bool();

Resolve c.prophto b;

c.val < Some(b); b
end

Coin(c, b) £ (c.val — Some b)
V (c.val — None x Jv.

Proph(c.proph, v) x ValToBool(v) = b)

11/18

Part Il — weakest preconditions and adequacy

12/18

Model of weakest preconditions in lIris

Encoding of weakest preconditions (simplified):

wp e; {®} £ if e; € Val then ®(ep) else (return value)
Voi.5(01) Ek
reducible(er, o1) A (progress)

Vez, 02, & ((e1,01) = (e, 02, &) =k (preservation)
S(02) * wp e2 {@} * .z wp e {True}

S(o) £leg ™ state interp.

Some intuitions about the involved components:
> The state interpretation holds the state of the physical heap
» View shifts P =k Q allow updates to owned resources

» The actual definition uses the > P modality to avoid circularity

13/18

Operational semantics: head reduction and observations

We extend reduction rules with observations:

n+ m,o, e c)
lioW{l <« v}, ec)
(l+—w,cd{lv}) = (oW {l < w}ec)
(fork {e},0) —h ((),0,€ 1 €.¢)
(Resolveptov,o) = ((),0,¢,(p,v) i e)
(NewProph, o) — (p,o W {p}, ¢ €)

(ﬁ +m, U) —h
(ref(v),o) —n

—~

A couple of remarks:
» Observations are only recorded on resolutions

> The state o now also records the prophecy variables in scope

14/18

Extension for prophecy variables

Encoding of weakest preconditions (simplified):
wp ey {®} £ if e € Val then ®(e;) else (return value)
Vo1, K1, Ko. 5(0’1, K1 -+ EQ) Ek
reducible(er, o1) A (progress)

Vea, 02, ej' ((er,01) = (e2, 02, &, 7)) =k (preservation)
S(02,72) * wp e2 {®} * kK . wp e {True}

S(o, %) = ‘[giq.ilﬂh“" * HI'I.‘L;LI'I]W‘"""h Adom(M) =02 A (state interp.)
V{p < vs} € M. vs = filter(p, k)

Some more intuitions about the involved components:
> The state interpretation holds observations that remain to be made

> Observations are removed from the list when taking steps

15/18

Statement of safety and adequacy

Safety with respect to a (pure) predicate:

Safey(e1) £ Vés, 0, 7. ([e1], @) =5, (2 12 €, 0,F)
= propery(e2,0) AVe € €. properte(e, o)
propery(e, o) = (e € Val A1)(e)) V reducible(e, o)

Theorem (adequacy). Let e be an expression and ¢ be a (pure)
predicate. If wp e {¢} is provable then Safe,(e).

16/18

Conclusion: what | did not show

Our prophecy variables support more features:
» Multi-resolution prophecies
> Resolution of prophecies on an atomic instructions

> Result value included in the prophecy resolutions

Our main motivations for prophecy variables in Iris:
> Logically atomic specifications (related to linearizability)
> Allow for much stronger proof rules
» Examples including RDCSS and Herlihy-Wing queues

Erasure theorem (elimination of ghost code)

17/18

Thanks! Questions?

(For more details: https://iris-project.org)

18/18

https://iris-project.org

