
1/18

Prophecy Variables in Separation Logic
(Extending Iris with Prophecy Variables)

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy,
Marianna Rapoport, Amin Timany, Derek Dreyer, Bart Jacobs



2/18

What is Iris?! What are prophecy variables?!

The Iris framework:
I Higher-order concurrent separation logic framework in Coq

(developed at MPI-SWS and elsewhere)
I Deployed in many verification projects (e.g., Rustbelt)
I Great for verifying tricky concurrent programs

Prophecy variables:
I Old idea introduced by Abadi and Lamport (1991)
I Lets you “peek into the future” of a program’s execution

when reasoning about an earlier step in the program
I Never formally integrated into Hoare logic before!!!



3/18

Our contribution: Prophecy variables for Iris

First integration of prophecy variables to Hoare logic!
I There was an informal treatment in Vafeiadis’s thesis
I We discovered a flaw in proof of his key example (RDCSS)

Key idea of our approach:
I Model the right to resolve a prophecy as an ownable resource
I Leverage separation logic to easily ensure soundness

Implementation in Iris:
I Everything is formally verified in Coq
I Including key examples (RDCSS, Herlihy-Wing queues)



4/18

Part I – separation logic and prophecy variables



5/18

Resources and ownership

The notion of resource is pervasive:
I File system handle, memory location, permission...
I A resource should not be used concurrently

(but this can sometimes be relaxed)
I In Iris they are expressed in terms of resource algebras

(user-defined structures called cameras)

Examples of resource ownership:
I ` 7→ v (exclusive ownership of a location `)

I `
q7−→ v (“read only” (fractional) ownership of a location `)

I Proph(p, v) (exclusive right to resolve prophecy p)



6/18

Separation logic (Iris base logic)

Separating conjunction P ∗ Q:
I The resources are split in disjoint parts

satisfying P and Q respectively
I `1 7→ v1 ∗ `2 7→ v2 can only be valid if `1 6= `2

I ` 7→ v1 ∗ ` 7→ v2 is a contradiction
I The magic wand P −∗ Q is a form of implication

Other logical connectives for building Iris propositions:
I Conjunction P ∧ Q, disjunction P ∨ Q...
I Universal and existential quantifiers
I Ownership of a resource a : M

γ
(and related connectives)

I Persistence modality �P , later modality .P ...



7/18

Hoare triples (and weakest preconditions)

We use Hoare triples {P} e {x .Q} for specifications:
I The (potential) result of evaluating e is bound in Q

I Evaluation of e is safe in a state satisfying P

I If a value is reached the corresponding state and value satisfy Q

I Defined in terms of weakest preconditions:

{P} e {x .Q} , �(P −∗ wp e {x .Q})

Weakest preconditions are encoded using the base logic!



8/18

Example of specification: eager coin

We consider a specification for a “coin”:
I A coin is only ever tossed once
I Reading its value always gives the same result

{True} new_coin() {x . ∃c . ∃b. x = c ∧ Coin(c , b)}
{Coin(c , b)} read_coin(c) {x . x = b ∧ Coin(c , b)}

Simple (eager) implementation:

Coin(c , b) , c 7→ b

new_coin() , ref(nondet_bool())

read_coin(c) , !c



9/18

A lazy coin implementation

What if we want to flip the coin as late as possible?

new_coin() , ref(None)

read_coin(c) , match ! c with
Some(b)⇒ b

| None ⇒ let b = nondet_bool();

c ← Some(b); b
end

To keep the same spec we need prophecy variables



10/18

Specification of the prophecy variables operations

Prophecy variables are used through two ghost code instructions
I NewProph creates a new prophecy variable
I Resolve p to v resolves prophecy variable p to value v

{True} NewProph {p. ∃v . Proph(p, v)}

{Proph(p, v)} Resolve p tow {x . x = () ∧ v = w}

Principles of prophecy variables in speration logic:
I The future is ours

Proph(p, v) gives exclusive right to resolve p

I We must fulfill our destiny
A prophecy can only be resolved to the predicted value



11/18

Back to the lazy coin implementation

new_coin() , let r = ref(None);

let p = NewProph;

{val = r , proph = p}

read_coin(c) , match ! c .val with
Some(b)⇒ b

| None ⇒ let b = nondet_bool();

Resolve c .proph to b;
c .val ← Some(b); b

end

Coin(c , b) , (c .val 7→ Some b)

∨ (c .val 7→ None ∗ ∃v .
Proph(c.proph, v) ∗ ValToBool(v) = b)



12/18

Part II – weakest preconditions and adequacy



13/18

Model of weakest preconditions in Iris

Encoding of weakest preconditions (simplified):

wp e1 {Φ} , if e1 ∈ Val then Φ(e1) else (return value)
∀σ1.S(σ1)

reducible(e1, σ1) ∧ (progress)
∀e2, σ2, ~ef .

(
(e1, σ1)→ (e2, σ2, ~ef )

)
S(σ2) ∗ wp e2 {Φ} ∗∗e∈~ef wp e {True}

}
(preservation)

S(σ) , •σ γheap (state interp.)

Some intuitions about the involved components:

I The state interpretation holds the state of the physical heap

I View shifts P Q allow updates to owned resources

I The actual definition uses the .P modality to avoid circularity



14/18

Operational semantics: head reduction and observations

We extend reduction rules with observations:

(n + m, σ)→h (n + m, σ, ε, ε)

(ref(v), σ)→h (`, σ ] {`← v}, ε, ε)
(`← w , σ ] {`← v})→h (`, σ ] {`← w}, ε, ε)

(fork {e} , σ)→h ((), σ, e :: ε, ε)

(Resolve p to v , σ)→h ((), σ, ε, (p, v) :: ε)

(NewProph, σ)→h (p, σ ] {p}, ε, ε)

A couple of remarks:
I Observations are only recorded on resolutions
I The state σ now also records the prophecy variables in scope



15/18

Extension for prophecy variables

Encoding of weakest preconditions (simplified):

wp e1 {Φ} , if e1 ∈ Val then Φ(e1) else (return value)
∀σ1, ~κ1, ~κ2.S(σ1, ~κ1 ++ ~κ2)

reducible(e1, σ1) ∧ (progress)
∀e2, σ2, ~ef .

(
(e1, σ1)→ (e2, σ2, ~ef , ~κ1)

)
S(σ2, ~κ2) ∗ wp e2 {Φ} ∗∗e∈~ef wp e {True}

}
(preservation)

S(σ,~κ) , •σ.1 γheap ∗ ∃Π. •Π
γproph ∧ dom(Π) = σ.2 ∧

∀{p ← vs} ∈ Π. vs = filter(p, ~κ)

(state interp.)

Some more intuitions about the involved components:

I The state interpretation holds observations that remain to be made

I Observations are removed from the list when taking steps



16/18

Statement of safety and adequacy

Safety with respect to a (pure) predicate:

Safeφ(e1) , ∀~es, σ, ~κ. ([e1],∅)→∗
tp (e2 :: ~es, σ, ~κ)

⇒ properφ(e2, σ) ∧ ∀e ∈ ~es. properTrue(e, σ)

properψ(e, σ) , (e ∈ Val ∧ ψ(e)) ∨ reducible(e, σ)

Theorem (adequacy). Let e be an expression and φ be a (pure)
predicate. If wp e {φ} is provable then Safeφ(e).



17/18

Conclusion: what I did not show

Our prophecy variables support more features:
I Multi-resolution prophecies
I Resolution of prophecies on an atomic instructions
I Result value included in the prophecy resolutions

Our main motivations for prophecy variables in Iris:
I Logically atomic specifications (related to linearizability)
I Allow for much stronger proof rules
I Examples including RDCSS and Herlihy-Wing queues

Erasure theorem (elimination of ghost code)



18/18

Thanks! Questions?
(For more details: https://iris-project.org)

https://iris-project.org

