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A-calculus Classical Realizability Channels and their reduction Correctness

Introduction

Operational framework for game semantics (P. Clairambaulr)
A play is an interactive program in a Krivine's Abstract Machine
Implements a winning strategy for typed terms

Aim: give a direct proof that the execution of such terms is well-behaved
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t,u,v == x | Axt | uv cc

Four kinds of terms:
- Variable

A-abstraction

Function application
Call/cc
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Simple types

Types are built using:
- Base types (Atomic types)

- Functions
Context:
- Finite set of type declarations

- r:X]:A],...,Xn:An

Typing judgement:
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Typing rules
Ix:AFt:B N 'Fu:A — B FI—V:AH
F-Mt:A— B M-uv:B ‘
AX cC
NMx:AFx:A l-c:(A—B) —A) = A
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A-calculus Classical Realizability

Channels and their reduction Correctness

Working with closures

A closure is a couple (t, o) where:
- tis aterm
- 0 1s an environment

0 maps free variables of t to closures

Notation (extend): o + {x — c}

Oy

VR0

Fo: T Fc:A .
Fo+{x —c}:T,x:A ’

Fo: T THt:A
<>
H{t,o): A

i
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Classical Realizability

Typing:
- A way to identify correct programs
- Based on the syntax

- Many working programs are rejected
let succ = fun n -> if true then n + 1 else false

Realizability:
- Another way of identifying correct programs
- Based on the notion of evaluation

- Compatible with typing

Correctness
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Stacks and processes

T,p = €& | cm —
Fe: XH

Stacks are built:

Fc: A FT[:BLN

- Using the empty stack ¢ —
Fem: (A — B)

- By pushing a closure ¢ on a stack 7

A process is a couple c¥ 7t where:

- ¢ is a closure N
Fc:A Fm:A .

Fexm: L

- 7 is a stack
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Classical Realizability

Stacks as “first class” objects

Stacks can be seen as execution contexts
Classical computation amounts to manipulating stacks (call/cc)

A stack 7t is a closed object:
- It can be seen as a constant that we denote k,

- k, is a new form of closure

One more typing rule:
o A

_ k.,
k,:A — B
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Summary of the syntax

t,u,v == x | At | uv cc
c = (t,o) | Kk,

T, p = €& | cm

P,q = CkxT
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Classical Realizability

(x, o) % TT

(MAxt,o)%c.m

(tu, o) %7

(cc,o) *cC. T

Reduction relation

o(x) %

(t,o+{x — chxm

(t, o) % (u, o). 7
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Pole, falsity values and truth values
Parameters:
- A set of processes 1 (closed under anti-reduction)

- An interpretation I for base types

Falsity values (set of stacks):
X1, = Ix IA = Bll,={cm | c € |Al,, 7 € [IBIl,}

Truth values (set of closures):
Al,={c e Al vrellAll, exm € 1}

The realizability relation (I,) is defined as:
clby A & celAl
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Soundness (adequacy)

Let 1 be a pole. If we have:
-TTHt:A
-0l T

then (t, o) I, A.

Let 1L be pole. If Fp : L, then p € L.
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New terms: channels

A channel is a term [A = X] where
- A is a context

- X is an atomic type

ACT
I=[A = X]:X

Ch
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Realizabiliy with channels

Channel substitution Z:
- Replace every channel &« = [A = X] by a term t,
- With (t,, o) I, X for every o I, A

Let 1L be a pole, and Z be a channel substitution. If we have:
-TFt:A
- ol T

then (tZ, o) I, A.

Let U be a pole, and L be a channel substitution. If +p : L, then pX € 1.
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The “good”, the “bad” and the “channel”

Final states are processes that cannot be reduced further using (—)

They can be of three kinds:
- “Channel” states: processes of the form ([A = X], o)%x 7
- “Bad” final states: processes of the form
- (Axt, o) ke
- k ke
- “Good” final states: final states that are neither of the above

We denote the corresponding sets &, & and &
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Normalization

If p is a process such that -p : L then

- either p = q€ &
-orp =*q€E?

Proof.  (by realizability)
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Normalization

If p is a process such that -p : L then

- either p = q€ &
-orp 2 qe@

Proof.  (by realizability)
- We consider the pole IL , ={p|p =* q€ TUF}
- Since & C 1, we have ([A = X], o) I, X
- L, is a channel substitution for I ,

- Since Fp : | we obtain that pLiy =p € 1L, O
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What about reducing channels?

A channel [A = X] should reduce to terms t such that A -t : X

Let A=s:N — N, z:N be a context
We want [A = N] to reduce to either of:
-z
- s[A = N]

Let T=f:(X — X) — X be a context
We want [ = X] to reduce to:
- AT, x: X = X]
- Which might be reduced further to fAx.x
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The reduction of channels

ANF(A = X) = [xtyty | AK) = (A = X)) (AL = X,) — X]
Where t; = Az.[A, X X; = Xi]
We define (=») to be the smallest relation such that:

- (=) C>»

- For all a € ANF(A = X),

([A = X], 0)%xm - (a, o)k

Correctness
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What was our goal again?
A play consists of a run of a process p in the machine
The Player reduces the term using (—)
When a channel is reached, the Opponent takes over

Opponent move: one step of (—») reduction

Conjecture 1.
If p is a process such that Fp : L, a run of p using (-») cannot:

- Stop on a “bad” final state

- Contain an infinite sequence of (—) reductions
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Subject reduction

Theorem 4.

If p and q are processes such that:
-Fp:L
-P>q

then q: L.
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Reduction to a “bad” state

If Fp: L, then it is not possible that p »* q € Z.

Proof.  (by contradiction)
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Reduction to a “bad” state

If Fp: L, then it is not possible that p »* q € Z.

Proof.  (by contradiction)

- We suppose that p »* q € &
- Fp:Ll = kq: L (subject reduction)
- q =" q'€ £U & (normalization theorem)

- q' = q (q is a final state)
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Reduction to a “bad” state

If Fp: L, then it is not possible that p »* q € Z.

Proof.  (by contradiction)

- We suppose that p »* q € &
- Fp:Ll = kq: L (subject reduction)

- q =" q'€ £U & (normalization theorem)

q = q (q is a final state)
Contradiction: ZN(FUF) = ¢ O
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Infinite reduction, infinite interaction

Theorem 6.
We consider Fp : L and suppose that there exists an infinite run R of the

machine starting from p using (—»). The run R should go through infinitely

many “channel” states).

Proof. (by contradiction)

23/25



A-calculus Classical Realizability Channels and their reduction Correctness

Infinite reduction, infinite interaction

Theorem 6.
We consider Fp : L and suppose that there exists an infinite run R of the

machine starting from p using (—»). The run R should go through infinitely

many “channel” states).

Proof. (by contradiction)

- We suppose that R goes through exactly n “channel” states

23/25



A-calculus Classical Realizability Channels and their reduction Correctness

Infinite reduction, infinite interaction

Theorem 6.
We consider Fp : L and suppose that there exists an infinite run R of the

machine starting from p using (—»). The run R should go through infinitely

many “channel” states).

Proof. (by contradiction)
- We suppose that R goes through exactly n “channel” states

- We consider p, the n-th “channel” state in the reduction of p

23/25



A-calculus Classical Realizability Channels and their reduction Correctness

Infinite reduction, infinite interaction

Theorem 6.
We consider Fp : L and suppose that there exists an infinite run R of the

machine starting from p using (—»). The run R should go through infinitely

many “channel” states).

Proof. (by contradiction)
- We suppose that R goes through exactly n “channel” states
- We consider p, the n-th “channel” state in the reduction of p

- There is g’ such that p’ - q' (otherwise R was not infinite)

23/25



A-calculus Classical Realizability Channels and their reduction Correctness

Infinite reduction, infinite interaction

Theorem 6.

We consider Fp : L and suppose that there exists an infinite run R of the
machine starting from p using (—»). The run R should go through infinitely

many “channel” states).

Proof. (by contradiction)
- We suppose that R goes through exactly n “channel” states
- We consider p, the n-th “channel” state in the reduction of p
- There is g’ such that p’ - q' (otherwise R was not infinite)

- Since p »* ¢, -q': L (subject reduction)
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Infinite reduction, infinite interaction

Theorem 6.
We consider Fp : L and suppose that there exists an infinite run R of the

machine starting from p using (—»). The run R should go through infinitely
many “channel” states).

Proof. (by contradiction)

- We suppose that R goes through exactly n “channel” states

We consider p, the n-th “channel” state in the reduction of p

There is q' such that p’ - g’ (otherwise R was not infinite)

Since p »* ¢, Fq': L (subject reduction)
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Infinite reduction, infinite interaction

Theorem 6.
We consider Fp : L and suppose that there exists an infinite run R of the

machine starting from p using (—»). The run R should go through infinitely
many “channel” states).

Proof. (by contradiction)

- We suppose that R goes through exactly n “channel” states

We consider p, the n-th “channel” state in the reduction of p

There is q' such that p’ - g’ (otherwise R was not infinite)

Since p »* ¢, Fq': L (subject reduction)

q —* q € €U % (normalization theorem)
- If ¢ € & then R was not infinite

- If q € & then R would contain more than n “channels” O
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Without subject reduction?

We need a pole:

Closed under (—b)_]

Containing &

Not containing any element of %

Closed under (-»)

In which channels realize their type
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