Realizability, Testing and Game Semantics

GaLoP 2014 (Grenoble)

Rodolphe Lepigre - LAMA, UMR 5127

Introduction

Operational framework for game semantics (P. Clairambault)

A play is an interactive program in a Krivine's Abstract Machine

Implements a winning strategy for typed terms

Aim: give a direct proof that the execution of such terms is well-behaved

Syntax

$t, u, v := x | \lambda x.t | uv | cc$

Four kinds of terms:

- Variable
- λ -abstraction
- Function application
- Call/cc

Simple types

Types are built using:

- Base types (Atomic types)
- Functions

Context:

- Finite set of type declarations
- $\Gamma = x_1 : A_1, \dots, x_n : A_n$

Typing judgement:

$$\Gamma \ \vdash \ t \ : \ A$$

Typing rules

$$\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x. t: A \rightarrow B} \xrightarrow{\rightarrow_{t}} \frac{\Gamma \vdash u: A \rightarrow B \quad \Gamma \vdash \nu: A}{\Gamma \vdash u \nu: B} \xrightarrow{\rightarrow_{e}}$$

$$\overline{\Gamma, \mathbf{x} : \mathbf{A} \vdash \mathbf{x} : \mathbf{A}}^{\mathbf{A}\mathbf{x}} \qquad \overline{\Gamma \vdash \mathfrak{cc} : ((\mathbf{A} \to \mathbf{B}) \to \mathbf{A}) \to \mathbf{A}}^{\mathrm{cc}}$$

Working with closures

A closure is a couple $\langle t\,,\,\sigma\rangle$ where:

- t is a term
- σ is an environment

 $\boldsymbol{\sigma}$ maps free variables of t to closures

Notation (extend): $\sigma + \{x \mapsto c\}$

$$\overline{\vdash \phi:\phi}^{\,\sigma_{\!\!\!\phi}}$$

$$\frac{\vdash \sigma: \Gamma \quad \vdash c: A}{\vdash \sigma + \{x \ \mapsto \ c\}: \Gamma, \ x: A}_{\sigma_{+}}$$

$$\frac{\vdash \sigma : \Gamma \quad \Gamma \vdash t : A}{\vdash \langle t, \sigma \rangle : A} \diamond_i$$

Classical Realizability

Typing:

- A way to identify correct programs
- Based on the syntax
- Many working programs are rejected

```
let succ = fun n -> if true then n + 1 else false
```

Realizability:

- Another way of identifying correct programs
- Based on the notion of evaluation
- Compatible with typing

Stacks and processes

 $\pi, \rho ::= \varepsilon \mid c.\pi$

Stacks are built:

- Using the empty stack ε
- By pushing a closure c on a stack π

A process is a couple $c \star \pi$ where:

- c is a closure
- π is a stack

$$\frac{\vdash \mathbf{c}: \mathbf{A} \quad \vdash \pi: \mathbf{A}^{\perp}}{\vdash \mathbf{c} \star \pi: \bot} \star$$

Stacks as "first class" objects

Stacks can be seen as execution contexts

Classical computation amounts to manipulating stacks (call/cc)

A stack π is a closed object:

- It can be seen as a constant that we denote \boldsymbol{k}_{π}
- k_π is a new form of closure

One more typing rule:

$$\frac{\vdash \pi: A^{\perp}}{\vdash k_{\pi}: A \to B}^{k_{\pi}}$$

t

CC

Summary of the syntax

$$(u, v) := x | \lambda x.t | uv |$$

$$c := \langle t, \sigma \rangle | k_{\pi}$$

$$\pi, \rho := \varepsilon | c.\pi$$

$$p, q := c \star \pi$$

Reduction relation

$$\langle x, \sigma \rangle \star \pi \quad \rightarrow \quad \sigma(x) \star \pi$$
$$\langle \lambda x.t, \sigma \rangle \star c. \pi \quad \rightarrow \quad \langle t, \sigma + \{x \mapsto c\} \rangle \star \pi$$
$$\langle tu, \sigma \rangle \star \pi \quad \rightarrow \quad \langle t, \sigma \rangle \star \langle u, \sigma \rangle. \pi$$
$$\langle cc, \sigma \rangle \star c. \pi \quad \rightarrow \quad c \star k_{\pi}. \pi$$

 $k_{\pi} \star c. \pi' \rightarrow c \star \pi$

Pole, falsity values and truth values

Parameters:

- A set of processes **L** (closed under anti-reduction)
- An interpretation I for base types

Falsity values (set of stacks):

$$\left\|X\right\|_{\!\scriptscriptstyle \rm I\hspace{-1pt}I} = I_X \qquad \qquad \left\|A \to B\right\|_{\!\scriptscriptstyle \rm I\hspace{-1pt}I} = \left\{c.\pi \mid c \in \left|A\right|_{\!\scriptscriptstyle \rm I\hspace{-1pt}I}, \pi \in \left\|B\right\|_{\!\scriptscriptstyle \rm I\hspace{-1pt}I}\right\}$$

Truth values (set of closures):

$$\left|A\right|_{\mathbb{I}} = \left\{c \in \Lambda \mid \forall \pi \in \left\|A\right\|_{\mathbb{I}} \ c \star \pi \in \mathbb{I}\right\}$$

The realizability relation (\mathbb{H}_{μ}) is defined as:

$$c \Vdash_{\!\!\!\!\perp} A \qquad \Leftrightarrow \qquad c \in |A|_{\!\!\!\!\perp}$$

Soundness (adequacy)

Theorem 1.

Let \bot be a pole. If we have: - $\Gamma \vdash t : A$ - $\sigma \Vdash_{\tau} \Gamma$

then
$$\langle t, \sigma \rangle \Vdash_{\mathbb{I}} A$$
.

Corollary 1.

Let ${\rm I\!I}$ be pole. If $\vdash p : \bot$, then $p \in {\rm I\!I}$.

New terms: channels

A channel is a term $[\Delta \Rightarrow X]$ where

- Δ is a context
- X is an atomic type

$$\frac{\Delta \subseteq \Gamma}{\Gamma \vdash [\Delta \Rightarrow X] : X}^{Ch}$$

Realizabiliy with channels

Channel substitution Σ :

- Replace every channel $\alpha = [\Delta \Rightarrow X]$ by a term t_α
- With $\langle t_{\alpha}, \sigma \rangle \Vdash_{\!\!\!\!\perp} X$ for every $\sigma \Vdash_{\!\!\!\!\perp} \Delta$

Theorem 2.

Let $\underline{\blacksquare}$ be a pole, and Σ be a channel substitution. If we have: $- \Gamma \vdash t : A$ $- \sigma \Vdash_{\underline{\blacksquare}} \Gamma$ then $\langle t\Sigma, \sigma \rangle \Vdash_{\underline{\blacksquare}} A$.

Corollary 2.

Let \mathbbm{L} be a pole, and Σ be a channel substitution. If $\vdash p : \bot$, then $p\Sigma \in \mathbbm{L}$.

The "good", the "bad" and the "channel"

Final states are processes that cannot be reduced further using (\rightarrow)

They can be of three kinds:

- "Channel" states: processes of the form $\langle [\Delta \Rightarrow X] \, , \, \sigma \rangle \star \pi$
- "Bad" final states: processes of the form
 - $\langle \lambda x.t, \sigma \rangle \star \varepsilon$
 - $k_{\pi} \star \varepsilon$
- "Good" final states: final states that are neither of the above

We denote the corresponding sets ${\mathscr C}\!\!\!\!{\mathscr S}$ and ${\mathscr G}$

Theorem 3.

If p is a process such that
$$\vdash p : \bot$$
 then
- either $p \rightarrow^* q \in \mathscr{G}$

- or $p \rightarrow^* q \in \mathscr{C}$.

Proof. (by realizability)

Theorem 3.

If p is a process such that
$$\vdash p : \bot$$
 then
- either $p \rightarrow^* q \in \mathscr{G}$

- or $p \rightarrow q \in \mathscr{C}$.

Proof. (by realizability)

- We consider the pole $\mathbb{1}_{\mathscr{N}} = \{p \mid p \rightarrow^* q \in \mathscr{G} \cup \mathscr{C}\}$

Theorem 3.

If p is a process such that $\vdash p : \bot$ then - either $p \rightarrow^* q \in \mathscr{G}$

- or $p \rightarrow * q \in \mathscr{C}$.

Proof. (by realizability)

- We consider the pole $\mathbb{1}_{\mathscr{N}} = \{p \mid p \twoheadrightarrow^* q \in \mathscr{G} \cup \mathscr{C}\}$
- Since $\mathscr{C} \subseteq \mathbb{1}_{\mathscr{N}}$ we have $\langle [\Delta \Rightarrow X], \sigma \rangle \Vdash_{\mathbb{1}_{\mathscr{N}}} X$

Theorem 3.

If p is a process such that
$$\vdash p : \bot$$
 then
- either $p \rightarrow^* q \in \mathscr{G}$

- or $p \rightarrow q \in \mathscr{C}$.

Proof. (by realizability)

- We consider the pole $\mathbb{1}_{\mathscr{N}} = \{p \mid p \rightarrow^* q \in \mathscr{G} \cup \mathscr{C}\}$
- Since $\mathscr{C} \subseteq \mathbb{1}_{\mathscr{N}}$ we have $\langle [\Delta \Rightarrow X], \sigma \rangle \Vdash_{\mathbb{1}_{\mathscr{N}}} X$
- Σ_{id} is a channel substitution for $\mathbb{L}_{\mathscr{N}}$

Theorem 3.

If p is a process such that
$$\vdash p : \bot$$
 then
- either $p \rightarrow^* q \in \mathscr{G}$
- or $p \rightarrow^* q \in \mathscr{C}$.

Proof. (by realizability)

- We consider the pole $\mathbb{1}_{\mathscr{N}}=\{p\ |\ p\twoheadrightarrow^* q\in \mathscr{G}\cup \mathscr{C}\}$
- Since $\mathscr{C} \subseteq \mathbb{1}_{\mathscr{N}}$ we have $\langle [\Delta \Rightarrow X], \sigma \rangle \Vdash_{\mathbb{1}_{\mathscr{N}}} X$
- Since $\vdash p: \bot$ we obtain that $p\Sigma_{id} = p \in {\rm I\!I}_{\mathscr{N}}$

What about reducing channels?

A channel $[\Delta \Rightarrow X]$ should reduce to terms t such that $\Delta \vdash t: X$

Let $\Delta = s : N \rightarrow N$, z : N be a context We want $[\Delta \Rightarrow N]$ to reduce to either of:

- z

- $s[\Delta \Rightarrow N]$

Let $\Gamma = f : (X \to X) \to X$ be a context

We want $[\Gamma \Rightarrow X]$ to reduce to:

- $f \lambda x.[\Gamma, x : X \Rightarrow X]$
- Which might be reduced further to $f \lambda x.x$

The reduction of channels

$$ANF(\Delta \Rightarrow X) = \left\{ x t_1 ... t_k \mid \Delta(x) = \left(\overrightarrow{A_1} \to X_1\right) ... \left(\overrightarrow{A_k} \to X_k\right) \to X \right\}$$

Where
$$t_i = \lambda \overrightarrow{x_i} \left[\Delta, \overrightarrow{x_i} : \overrightarrow{A_i} \Rightarrow X_i \right]$$

We define (\rightarrow) to be the smallest relation such that:

- $(\rightarrow) \subseteq (\rightarrow)$
- For all $a \in ANF(\Delta \Rightarrow X)$,

$$\langle [\Delta \Rightarrow X], \sigma \rangle \star \pi \quad \twoheadrightarrow \quad \langle a, \sigma \rangle \star \pi$$

What was our goal again?

A play consists of a run of a process p in the machine

The Player reduces the term using (\rightarrow)

When a channel is reached, the Opponent takes over

Opponent move: one step of (\rightarrow) reduction

Conjecture 1.

- Stop on a "bad" final state
- Contain an infinite sequence of (\rightarrow) reductions

Subject reduction

Theorem 4.

If p and q are processes such that: $- \vdash p : \bot$ $- p \twoheadrightarrow q$ then $\vdash q : \bot$.

Theorem 5.

If $\vdash p : \bot$, then it is not possible that $p \twoheadrightarrow^* q \in \mathscr{B}$.

Proof. (by contradiction)

Theorem 5.

If $\vdash p : \bot$, then it is not possible that $p \twoheadrightarrow^* q \in \mathscr{B}$.

Proof. (by contradiction)

– We suppose that $p \twoheadrightarrow^* q \in \mathscr{B}$

Theorem 5.

If $\vdash p : \bot$, then it is not possible that $p \twoheadrightarrow^* q \in \mathscr{B}$.

Proof. (by contradiction)

- We suppose that $p \twoheadrightarrow^* q \in \mathscr{B}$
- $\vdash p : \bot \Rightarrow \vdash q : \bot$ (subject reduction)

Theorem 5.

If $\vdash p : \bot$, then it is not possible that $p \twoheadrightarrow^* q \in \mathscr{B}$.

Proof. (by contradiction)

- We suppose that $p \twoheadrightarrow^* q \in \mathscr{B}$
- $\vdash p: \bot \Rightarrow \vdash q: \bot$ (subject reduction)
- q $\twoheadrightarrow^* q' \in \mathscr{G} \cup \mathscr{C}$ (normalization theorem)

Theorem 5.

If $\vdash p : \bot$, then it is not possible that $p \twoheadrightarrow^* q \in \mathscr{B}$.

Proof. (by contradiction)

- We suppose that $p \twoheadrightarrow^* q \in \mathscr{B}$
- $\vdash p : \bot \Rightarrow \vdash q : \bot$ (subject reduction)
- $q \rightarrow q' \in \mathcal{G} \cup \mathcal{C}$ (normalization theorem)
- q' = q (q is a final state)

Theorem 5.

If $\vdash p : \bot$, then it is not possible that $p \twoheadrightarrow^* q \in \mathscr{B}$.

Proof. (by contradiction)

- We suppose that $p \twoheadrightarrow^* q \in \mathscr{B}$
- $\vdash p: \bot \Rightarrow \vdash q: \bot$ (subject reduction)
- q \rightarrow^* q' $\in \mathscr{G} \cup \mathscr{C}$ (normalization theorem)
- q' = q (q is a final state)
- Contradiction: $\mathscr{B} \cap (\mathscr{G} \cup \mathscr{C}) = \phi$

Theorem 6.

Theorem 6.

Proof. (by contradiction)

- We suppose that R goes through exactly n "channel" states

Theorem 6.

- We suppose that R goes through exactly n "channel" states
- We consider p', the n-th "channel" state in the reduction of p

Theorem 6.

- We suppose that R goes through exactly n "channel" states
- We consider p', the n-th "channel" state in the reduction of p
- There is q' such that $p' \twoheadrightarrow q'$ (otherwise R was not infinite)

Theorem 6.

- We suppose that R goes through exactly n "channel" states
- We consider p', the n-th "channel" state in the reduction of p
- There is q' such that $p' \twoheadrightarrow q'$ (otherwise R was not infinite)
- Since $p \twoheadrightarrow q'$, $\vdash q' : \bot$ (subject reduction)

Theorem 6.

- We suppose that R goes through exactly n "channel" states
- We consider p', the n-th "channel" state in the reduction of p
- There is q' such that $p' \twoheadrightarrow q'$ (otherwise R was not infinite)
- Since $p \twoheadrightarrow^* q'$, $\vdash q' : \bot$ (subject reduction)
- $q' \rightarrow^* q \in \mathscr{G} \cup \mathscr{C}$ (normalization theorem)

Theorem 6.

- We suppose that R goes through exactly n "channel" states
- We consider p', the n-th "channel" state in the reduction of p
- There is q' such that $p' \twoheadrightarrow q'$ (otherwise R was not infinite)
- Since $p \twoheadrightarrow q'$, $\vdash q' : \bot$ (subject reduction)
- $q' \rightarrow^* q \in \mathscr{G} \cup \mathscr{C}$ (normalization theorem)
 - If $q\in \mathscr{G}$ then R was not infinite

Theorem 6.

- We suppose that R goes through exactly n "channel" states
- We consider p', the n-th "channel" state in the reduction of p
- There is q' such that $p' \twoheadrightarrow q'$ (otherwise R was not infinite)
- Since $p \twoheadrightarrow^* q'$, $\vdash q' : \bot$ (subject reduction)
- $q' \rightarrow^* q \in \mathscr{G} \cup \mathscr{C}$ (normalization theorem)
 - If $q\in \mathscr{G}$ then R was not infinite
 - If $q\in \mathscr{C}$ then R would contain more than n "channels"

Without subject reduction?

We need a pole:

- Closed under $(\rightarrow)^{-1}$
- Containing ${\mathscr G}$
- Not containing any element of ${\mathscr B}$
- Closed under (→)
- In which channels realize their type

Thank you!

