THE PML₂ LANGUAGE: PROVING PROGRAMS IN ML

Rodolphe Lepigre - Séminaire Gallium du 08/03/2018

Semantics and Implementation of an Extension of ML for Proving Programs

RODOLPHE LEPIGRE, 18/07/2017

Supervised by Christophe Raffalli, Pierre Hyvernat and Karim Nour (hdr)

A Programming Language, with Program Proving Features

An ML-like programming language with:

- records, variants (constructors), inductive types,
- polymorphism, general recursion,
- a call-by-value evaluation strategy,
- effects (control operators),
- a Curry-style syntax (light) and subtyping.

A Programming Language, with Program Proving Features

An ML-like programming language with:

- records, variants (constructors), inductive types,
- polymorphism, general recursion,
- a call-by-value evaluation strategy,
- effects (control operators),
- a Curry-style syntax (light) and subtyping.

For proving program, the type system is enriched with:

- programs as individuals (higher-order layer),
- an equality type $t \equiv u$ (observational equivalence),
- a dependent function type (typed quantification).
- Termination checking is required for proofs.

A Programming Language, with Program Proving Features

An ML-like programming language with:

- records, variants (constructors), inductive types,
- polymorphism, general recursion,
- a call-by-value evaluation strategy,
- effects (control operators),
- a Curry-style syntax (light) and subtyping.

For proving program, the type system is enriched with:

- programs as individuals (higher-order layer),
- an equality type $t \equiv u$ (observational equivalence),
- a dependent function type (typed quantification).
- Termination checking is required for proofs.

Example of Program and Proof

type rec nat = [Zero ; S of nat] val rec add : nat \Rightarrow nat \Rightarrow nat = fun n m { case n { Zero \rightarrow m | S[k] \rightarrow S[add k m] } }

Example of Program and Proof

```
val add_Zero_m : \forall m \in \mathsf{nat}, \ \mathsf{add} \ \mathsf{Zero} \ m \ \equiv \ m = fun m { { } }
```

Example of Program and Proof

```
type rec nat = [Zero ; S of nat]
val rec add : nat \Rightarrow nat \Rightarrow nat =
  fun n m { case n { Zero \rightarrow m | S[k] \rightarrow S[add k m] } }
val add_Zero_m : \forall m \in nat, add Zero m \equiv m =
  fun m { { } }
val rec add n Zero : \forall n \in nat, add n Zero \equiv n =
  funn{
     case n {
       Zero \rightarrow {}
       S[p] \rightarrow add_n_Zero p
     }
  }
```

Part I Specificities of the Type System

PART II FORMALISATION OF THE SYSTEM AND SEMANTICS

PART III SEMANTICAL VALUE RESTRICTION

Part I

Specificities of the Type System

PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:

- add (add m n) k \equiv add m (add n k)
- rev(revl) \equiv l
- mapg(mapfl) \equiv map(funx{g(fx)}) l
- sort (sort l) \equiv sort l

(associativity of add) (rev is an involution) (map and composition) (sort is idempotent)

PROPERTIES AS PROGRAM EQUIVALENCES

Examples of (equational) program properties:

- add (add m n) k \equiv add m (add n k)
- rev (rev l) \equiv l
- mapg(mapfl) \equiv map(funx{g(fx)})l
- sort (sort l) \equiv sort l

(associativity of add) (rev is an involution) (map and composition) (sort is idempotent)

Specification of a sorting function using predicates:

- is_increasing (sort l) \equiv true
- is_perm (sort l) l \equiv true

(sort produces a sorted list) (sort yields a permutation)

We consider a new type former $t \equiv u$ (where t and u are untyped programs).

We consider a new type former $t \equiv u$ (where t and u are untyped programs).

It is interpreted as:

- the unit type \top if t and u are "equivalent",
- the empty type \perp otherwise.

We consider a new type former $t \equiv u$ (where t and u are untyped programs).

It is interpreted as:

- the unit type \top if t and u are "equivalent",
- the empty type \perp otherwise.

 $\frac{\Gamma; \Xi \vdash t : \top}{\Gamma; \Xi \vdash t : u_1 \equiv u_2} \frac{\text{dec. proc. says "yes"}}{\Xi \vdash u_1 \equiv u_2}$

We consider a new type former $t \equiv u$ (where t and u are untyped programs).

It is interpreted as:

- the unit type \top if t and u are "equivalent",
- the empty type \perp otherwise.

$$\frac{\Gamma; \Xi \vdash t: \top}{\Gamma; \Xi \vdash t: u_1 \equiv u_2} \qquad \frac{\Gamma; \Xi \vdash t: u_1 \equiv u_2}{\Gamma; \Xi \vdash t: u_1 \equiv u_2} \qquad \frac{\Gamma; x: \top; \Xi, u_1 \equiv u_2 \vdash t: C}{\Gamma; x: u_1 \equiv u_2; \Xi \vdash t: C}$$

We consider a new type former $t \equiv u$ (where t and u are untyped programs).

It is interpreted as:

- the unit type \top if t and u are "equivalent",
- the empty type \perp otherwise.

$$\frac{\Gamma; \Xi \vdash t: \top}{\Gamma; \Xi \vdash t: u_1 \equiv u_2} \qquad \frac{\Gamma; \Xi \vdash t: u_1 \equiv u_2}{\Gamma; \Xi \vdash t: u_1 \equiv u_2} \qquad \frac{\Gamma; X: \top; \Xi, u_1 \equiv u_2 \vdash t: C}{\Gamma; X: u_1 \equiv u_2; \Xi \vdash t: C}$$

Remark: equivalence is undecidable.

We consider a new type former $t \equiv u$ (where t and u are untyped programs).

It is interpreted as:

- the unit type \top if t and u are "equivalent",
- the empty type \perp otherwise.

$$\frac{\Gamma; \Xi \vdash t: \top}{\Gamma; \Xi \vdash t: u_1 \equiv u_2} \xrightarrow{\Gamma; \Xi \vdash t: u_1 \equiv u_2} \frac{\Gamma; \Xi \vdash t: u_1 \equiv u_2}{\Gamma; \Xi \vdash t: u_1 \equiv u_2} \xrightarrow{\Gamma; Z \vdash t: C} \frac{\Gamma; X: \top; \Xi, u_1 \equiv u_2 \vdash t: C}{\Gamma; X: u_1 \equiv u_2; \Xi \vdash t: C}$$

Remark: equivalence is undecidable.

Remark: decision of equivalence only needs to be correct.

First-Order Quantification is not Enough

val rec add : nat \Rightarrow nat \Rightarrow nat = fun n m { case n { Zero \rightarrow m | S[k] \rightarrow S[add k m] } }

val rec add : nat \Rightarrow nat \Rightarrow nat =

fun n m { case n { Zero \rightarrow m | S[k] \rightarrow S[add k m] } }

val add_Zero_m : $\forall m$, add Zero m \equiv m = {- ??? -}

```
val rec add : nat \Rightarrow nat \Rightarrow nat =
```

```
\textbf{fun n m \{ \textbf{case n } \{ \textbf{ Zero } \rightarrow \textbf{ m } | \textbf{ S[k] } \rightarrow \textbf{ S[add } \textbf{ k m] } \} }
```

```
val add_Zero_m : \forall m, add Zero m \equiv m = {}
```

```
// Immediate by definition
```

```
val rec add : nat \Rightarrow nat \Rightarrow nat =
```

```
fun n m { case n { Zero \rightarrow m | S[k] \rightarrow S[add k m] } }
```

```
val add_Zero_m : \forall m, add Zero m \equiv m = {}
```

// Immediate by definition

val add_n_Zero : $\forall n$, add n Zero \equiv n = {- ??? -}

```
val rec add : nat \Rightarrow nat \Rightarrow nat =
```

```
fun n m { case n { Zero \rightarrow m | S[k] \rightarrow S[add k m] } }
```

```
val add_Zero_m : \forall m, add Zero m \equiv m = {}
```

// Immediate by definition

val add_n_Zero : $\forall n$, add n Zero \equiv n = {- ??? -}

// Nothing we can do

```
val rec add : nat \Rightarrow nat \Rightarrow nat =
fun n m { case n { Zero \rightarrow m | S[k] \rightarrow S[add k m] } }
```

```
val add_Zero_m : \forall m, add Zero m \equiv m = {}
```

// Immediate by definition

val add_n_Zero : $\forall n$, add n Zero \equiv n = {- ??? -} // Nothing we can do

We need a form of typed quantification!

```
val rec add_n_Zero : ∀n∈nat, add n Zero = n =
fun n {
   case n {
     Zero → {}
     S[p] → add_n_Zero p
   }
}
```

```
val rec add_n_Zero : ∀n∈nat, add n Zero = n =
fun n {
   case n {
     Zero → {}
     S[p] → add_n_Zero p
   }
}
```

Remark: we may inspect the elements of the domain.

```
val rec add_n_Zero : ∀n∈nat, add n Zero = n =
fun n {
    case n {
        Zero → {}
        S[p] → add_n_Zero p
    }
}
```

Remark: we may inspect the elements of the domain.

$$\frac{\Gamma, x : A; \Xi \vdash t : B}{\Gamma; \Xi \vdash \lambda x.t : \forall x \in A.B}$$

```
val rec add_n_Zero : ∀n∈nat, add n Zero = n =
fun n {
    case n {
        Zero → {}
        S[p] → add_n_Zero p
    }
}
```

Remark: we may inspect the elements of the domain.

$$\frac{\Gamma, x : A; \Xi \vdash t : B}{\Gamma; \Xi \vdash \lambda x.t : \forall x \in A.B} \qquad \qquad \frac{\Gamma; \Xi \vdash t : \forall x \in A.B \quad \Gamma; \Xi \vdash v : A}{\Gamma; \Xi \vdash t v : B[x \coloneqq v]}$$

STRUCTURING PROOFS WITH DUMMY PROGRAMS

```
val rec add_n_Sm : \foralln m\innat, add n S[m] \equiv S[add n m] =
  fun n m {
     case n { Zero \rightarrow {} | S[k] \rightarrow add n Sm k m }
  }
val rec add_comm : \foralln m\innat, add n m \equiv add m n =
  fun n m {
     case n {
        Zero \rightarrow add n Zero m
        \texttt{S[k]} \ \rightarrow \ \texttt{add\_n\_Sm} \ \texttt{m} \ \texttt{k; add\_comm} \ \texttt{k m}
     }
   }
```

Part II

Formalisation of the System and Semantics

Realizability Model

We build a model to prove that the language has the expected properties.

Realizability Model

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

- 1) give the syntax of programs and types,
- 2) define the interpretation of types as sets of terms (uses reduction),
- 3) define adequate typing rules,
- 4) deduce termination, type safety and consistency.

Realizability Model

We build a model to prove that the language has the expected properties.

To construct the model, we need to:

- 1) give the syntax of programs and types,
- 2) define the interpretation of types as sets of terms (uses reduction),
- 3) define adequate typing rules,
- 4) deduce termination, type safety and consistency.

Advantage: it is modular (contrary to type preservation).

CALL-BY-VALUE ABSTRACT MACHINE

Values
$$(\Lambda_{\iota})$$
 $\nu, w ::= x | \lambda x.t | \{(l_i = \nu_i)_{i \in I}\} | C_k[\nu]$
Terms (Λ) $t, u ::= \nu | t u | \nu.l_k | [\nu| (C_i[x_i] \rightarrow t_i)_{i \in I}] | \mu \alpha.t | [\pi]t$
Stacks (Π) $\pi, \xi ::= \alpha | \varepsilon | \nu.\pi | [t]\pi$ (evaluation context)
Processes $p, q ::= t * \pi$

CALL-BY-VALUE REDUCTION RELATION

$$\begin{array}{l} t \ u \ast \pi \succ u \ast [t]\pi \\ \nu \ast [t]\pi \succ t \ast \nu . \pi \\ \lambda x.t \ast \nu . \pi \succ t[x \coloneqq \nu] \ast \pi \\ \{(l_i = \nu_i)_{i \in I}\}.l_k \ast \pi \succ \nu_k \ast \pi \qquad (k \in I) \\ [C_k[\nu] \mid (C_i[x_i] \rightarrow t_i)_{i \in I}] \ast \pi \succ t_k[x_k \coloneqq \nu] \ast \pi \qquad (k \in I) \\ \mu \alpha.t \ast \pi \succ t[\alpha \coloneqq \pi] \ast \pi \\ [\pi] t \ast \xi \succ t \ast \pi \end{array}$$

Successful Computation and Observational Equivalence

The abstract machine may either:

- successfully compute a result (it converges),
- fail with a *runtime error* or never terminate (it diverges).
The abstract machine may either:

- successfully compute a result (it converges),
- fail with a *runtime error* or never terminate (it diverges).

Definition: we write $t * \pi \Downarrow iff t * \pi >^* \nu * \varepsilon$ for some value ν ($t * \pi \uparrow$ otherwise).

The abstract machine may either:

- successfully compute a result (it converges),
- fail with a *runtime error* or never terminate (it diverges).

Definition: we write $t * \pi \Downarrow$ iff $t * \pi >^* \nu * \varepsilon$ for some value ν ($t * \pi \uparrow$ otherwise).

$$(\lambda \mathbf{x}.\mathbf{x}) \{\} * \varepsilon \Downarrow \qquad (\lambda \mathbf{x}.\mathbf{x} \ \mathbf{x}) \ (\lambda \mathbf{x}.\mathbf{x} \ \mathbf{x}) * \varepsilon \Uparrow \qquad (\lambda \mathbf{x}.\mathbf{t}).\mathbf{l}_1 * \varepsilon \Uparrow$$

The abstract machine may either:

- successfully compute a result (it converges),
- fail with a *runtime error* or never terminate (it diverges).

Definition: we write $t * \pi \Downarrow$ iff $t * \pi >^* \nu * \varepsilon$ for some value ν ($t * \pi \uparrow$ otherwise).

$$(\lambda x. x) \{\} * \varepsilon \Downarrow \qquad (\lambda x. x x) (\lambda x. x x) * \varepsilon \Uparrow \qquad (\lambda x. t). l_1 * \varepsilon \Uparrow$$

Definition: two terms are equivalent if they converge in the same contexts.

The abstract machine may either:

- successfully compute a result (it converges),
- fail with a *runtime error* or never terminate (it diverges).

Definition: we write $t * \pi \Downarrow$ iff $t * \pi >^* \nu * \varepsilon$ for some value ν ($t * \pi \uparrow$ otherwise).

$$(\lambda x. x) \{\} * \varepsilon \Downarrow \qquad (\lambda x. x x) (\lambda x. x x) * \varepsilon \Uparrow \qquad (\lambda x. t). l_1 * \varepsilon \Uparrow$$

Definition: two terms are equivalent if they converge in the same contexts.

$$(\equiv) = \{(t, u) \mid \forall \pi, t * \pi \Downarrow \Leftrightarrow u * \pi \Downarrow\}$$

The abstract machine may either:

- successfully compute a result (it converges),
- fail with a *runtime error* or never terminate (it diverges).

Definition: we write $t * \pi \Downarrow$ iff $t * \pi >^* \nu * \varepsilon$ for some value ν ($t * \pi \uparrow$ otherwise).

$$(\lambda x. x) \{\} * \varepsilon \Downarrow \qquad (\lambda x. x x) (\lambda x. x x) * \varepsilon \Uparrow \qquad (\lambda x. t). l_1 * \varepsilon \Uparrow$$

Definition: two terms are equivalent if they converge in the same contexts.

$$(\equiv) = \{(t, u) \mid \forall \pi, \forall \rho, t\rho * \pi \Downarrow \Leftrightarrow u\rho * \pi \Downarrow\}$$

Types as Sets of Canonical Values

Definition: a type A is interpreted as a set of values $\llbracket A \rrbracket$ closed under (\equiv) .

Types as Sets of Canonical Values

Definition: a type A is interpreted as a set of values $\llbracket A \rrbracket$ closed under (\equiv) .

$$\begin{split} \llbracket \{ l_1 : A_1; l_2 : A_2 \} \rrbracket &= \left\{ \{ l_1 = \nu_1; l_2 = \nu_2 \} \mid \nu_1 \in \llbracket A_1 \rrbracket \land \nu_2 \in \llbracket A_2 \rrbracket \right\} \\ \llbracket [[C_1 : A_1 \mid C_2 : A_2] \rrbracket &= \left\{ C_i [\nu] \mid i \in \{1, 2\} \land \nu \in \llbracket A_i \rrbracket \right\} \\ \llbracket \forall X.A \rrbracket &= \bigcap_{\Phi \text{ type}} \llbracket A[X \coloneqq \Phi] \rrbracket \\ \llbracket \exists X.A \rrbracket &= \bigcup_{\Phi \text{ type}} \llbracket A[X \coloneqq \Phi] \rrbracket \\ \llbracket \exists X.A \rrbracket &= \bigcup_{\nu \text{ value}} \llbracket A[\alpha \coloneqq t] \rrbracket \\ \llbracket \exists x.A \rrbracket &= \bigcup_{\nu \text{ value}} \llbracket A[\alpha \coloneqq t] \rrbracket \\ \llbracket \exists x.A \rrbracket &= \bigcup_{\nu \text{ value}} \llbracket A[\alpha \coloneqq t] \rrbracket$$

Membership Types and Dependency

We consider a new membership type $t \in A$ (with t a term, A a type).

- It is interpreted as $\llbracket\!\! [t\!\in\! A]\!\!] = \{\nu \in \llbracket\!\! [A]\!\!] \mid t \equiv \nu\}$,
- and allows the introduction of dependency.

Membership Types and Dependency

We consider a new membership type $t \in A$ (with t a term, A a type).

- It is interpreted as $\llbracket\!\![t\!\in\!\!A]\!\!]=\{\nu\in\llbracket\!\![A]\!\!]\mid t\equiv\nu\}$,
- and allows the introduction of dependency.

The dependent function type $\forall x\!\in\!A.B$

- is defined as $\forall x.(x \in A \Rightarrow B)$,
- this is a form of relativised quantification scheme.

Semantic Restriction Type and Equalities

We also consider a new restriction type $A \upharpoonright P$:

- it is build using a type A and a "semantic predicate" P,
- $[A \upharpoonright P]$ is equal to [A] if P is satisfied and to $[\bot]$ otherwise.
- We can use predicates like $t \equiv u$, $\neg P$ or $P \land Q$.

Semantic Restriction Type and Equalities

We also consider a new restriction type $A \upharpoonright P$:

- it is build using a type A and a "semantic predicate" P,
- $[A \upharpoonright P]$ is equal to [A] if P is satisfied and to $[\bot]$ otherwise.
- We can use predicates like $t \equiv u$, $\neg P$ or $P \land Q$.

The equality type $t \equiv u$ is encoded as $\top \upharpoonright t \equiv u$.

 $\llbracket A \Rightarrow B \rrbracket = \{\lambda x. w \mid \forall v \in \llbracket A \rrbracket, w[x \coloneqq v] \in \llbracket B \rrbracket\}$

 $\llbracket A \Rightarrow B \rrbracket = \{\lambda x. w \mid \forall v \in \llbracket A \rrbracket, w[x \coloneqq v] \in \llbracket B \rrbracket\}$

What about λ -abstractions which bodies are terms?

 $\llbracket A \Rightarrow B \rrbracket = \{\lambda x. w \mid \forall v \in \llbracket A \rrbracket, w[x \coloneqq v] \in \llbracket B \rrbracket\}$

What about λ -abstractions which bodies are terms?

We define a completion operation $\llbracket A \rrbracket \mapsto \llbracket A \rrbracket^{\perp \perp}$.

 $\llbracket A \Rightarrow B \rrbracket = \{\lambda x. w \mid \forall v \in \llbracket A \rrbracket, w[x \coloneqq v] \in \llbracket B \rrbracket\}$

What about λ -abstractions which bodies are terms?

We define a completion operation $\llbracket A \rrbracket \mapsto \llbracket A \rrbracket^{\perp \perp}$.

The set $[A]^{\perp \perp}$ contains terms "behaving" as values of [A].

 $\llbracket A \Rightarrow B \rrbracket = \{\lambda x. w \mid \forall v \in \llbracket A \rrbracket, w[x \coloneqq v] \in \llbracket B \rrbracket\}$

What about λ -abstractions which bodies are terms?

We define a completion operation $\llbracket A \rrbracket \mapsto \llbracket A \rrbracket^{\perp \perp}$.

The set $[A]^{\perp \perp}$ contains terms "behaving" as values of [A].

Definition: we take $\llbracket A \Rightarrow B \rrbracket = \{\lambda x.t \mid \forall v \in \llbracket A \rrbracket, t[x \coloneqq v] \in \llbracket B \rrbracket^{\perp \perp}\}.$

The definition of $\llbracket A \rrbracket^{\perp \perp}$ is parametrised by a set of processes $\perp \subseteq \Lambda \times \Pi$.

We require that $p \in \mathbb{I}$ and q > p implies $q \in \mathbb{I}$.

The definition of $\llbracket A \rrbracket^{\perp \perp}$ is parametrised by a set of processes $\perp \subseteq \Lambda \times \Pi$.

```
We require that p \in \mathbb{I} and q > p implies q \in \mathbb{I}.
```

Intuitively, \bot is a set of processes that "behave well".

The definition of $\llbracket A \rrbracket^{\perp \perp}$ is parametrised by a set of processes $\perp \subseteq \Lambda \times \Pi$.

```
We require that p \in \mathbb{I} and q > p implies q \in \mathbb{I}.
```

Intuitively, \bot is a set of processes that "behave well".

The set $\mathbb{I} = \{p \mid p \downarrow\}$ is a good choice.

The definition of $\llbracket A \rrbracket^{\perp \perp}$ is parametrised by a set of processes $\perp \subseteq \Lambda \times \Pi$.

We require that $p \in \mathbb{1}$ and q > p implies $q \in \mathbb{1}$.

Intuitively, \bot is a set of processes that "behave well".

The set $\mathbb{I} = \{p \mid p \downarrow\}$ is a good choice.

$$\llbracket A \rrbracket \quad \in \; \{ \Phi \subseteq \Lambda_{\iota} \mid \nu \in \Phi \land \nu \equiv w \Rightarrow w \in \Phi \}$$
$$\llbracket A \rrbracket^{\bot} \quad = \; \{ \pi \in \Pi \mid \forall \nu \in \llbracket A \rrbracket, \nu * \pi \in \bot \}$$
$$\llbracket A \rrbracket^{\bot \bot} \quad = \; \{ t \in \Lambda \mid \forall \pi \in \llbracket A \rrbracket^{\bot}, t * \pi \in \bot \}$$

Combining call-by-value and effects leads to soundness issues (well-known).

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: "value restriction" on some typing rules.

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: "value restriction" on some typing rules.

This is encoded with two forms judgments:

- Γ ; $\Xi \vdash_{val} v : A$ for values only,
- Γ ; $\Xi \vdash t : A$ for terms (including values).

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: "value restriction" on some typing rules.

This is encoded with two forms judgments:

- Γ ; $\Xi \vdash_{val} v : A$ for values only,
- Γ ; $\Xi \vdash t : A$ for terms (including values).

$$\frac{\Gamma; \Xi \vdash_{val} v : A}{\Gamma; \Xi \vdash v : A}$$

Combining call-by-value and effects leads to soundness issues (well-known).

Usual solution: "value restriction" on some typing rules.

This is encoded with two forms judgments:

- Γ ; $\Xi \vdash_{val} v : A$ for values only,
- Γ ; $\Xi \vdash t : A$ for terms (including values).

$$\frac{\Gamma; \Xi \vdash_{val} \nu : A}{\Gamma; \Xi \vdash \nu : A} \qquad \qquad \frac{\Gamma; \Xi \vdash t : A \Rightarrow B \quad \Gamma; \Xi \vdash u : A}{\Gamma; \Xi \vdash t u : B} \\
\frac{\Gamma, x : A; \Xi \vdash_{val} x : A}{\Gamma; \Xi \vdash_{val} \lambda x. t : A \Rightarrow B}$$

Theorem (adequacy lemma):

- if $\vdash t : A$ is derivable then $t \in \llbracket A \rrbracket^{\perp \perp}$,
- if $\vdash_{val} v : A$ is derivable then $v \in \llbracket A \rrbracket$.

Theorem (adequacy lemma):

- if $\vdash t : A$ is derivable then $t \in \llbracket A \rrbracket^{\perp \perp}$,
- if $\vdash_{val} v : A$ is derivable then $v \in \llbracket A \rrbracket$.

Proof by induction on the typing derivation.

Theorem (adequacy lemma):

- if $\vdash t : A$ is derivable then $t \in \llbracket A \rrbracket^{\perp \perp}$,
- if $\vdash_{val} v : A$ is derivable then $v \in \llbracket A \rrbracket$.

Proof by induction on the typing derivation.

We only need to check that our typing rules are "correct".

Theorem (adequacy lemma):

- if $\vdash t : A$ is derivable then $t \in \llbracket A \rrbracket^{\perp \perp}$,
- if $\vdash_{val} v : A$ is derivable then $v \in \llbracket A \rrbracket$.

Proof by induction on the typing derivation.

We only need to check that our typing rules are "correct".

For example
$$\frac{\vdash_{val} \nu : A}{\vdash \nu : A}$$
 is correct since $\llbracket A \rrbracket \subseteq \llbracket A \rrbracket^{\perp \perp}$.

$$\frac{\Gamma; \Xi \vdash_{val} v : A}{\Gamma; \Xi \vdash_{val} v : \forall X.A} X \notin \Gamma$$

 $\frac{X \vdash_{val} v : A}{\vdash_{val} v : \forall X.A}$

$$\frac{X \vdash_{val} v : A}{\vdash_{val} v : \forall X.A}$$

We suppose $\nu \in \llbracket A[X \coloneqq \Phi] \rrbracket$ for all Φ , and show $\nu \in \llbracket \forall X.A \rrbracket$.

$$\frac{X \vdash_{val} v : A}{\vdash_{val} v : \forall X.A}$$

We suppose $v \in \llbracket A[X := \Phi] \rrbracket$ for all Φ , and show $v \in \llbracket \forall X.A \rrbracket$.

This is immediate since $\llbracket \forall X.A \rrbracket = \bigcap_{\Phi} \llbracket A[X \coloneqq \Phi] \rrbracket$.

$$\frac{X \vdash_{val} v : A}{\vdash_{val} v : \forall X.A}$$

We suppose $\nu \in \llbracket A[X \coloneqq \Phi] \rrbracket$ for all Φ , and show $\nu \in \llbracket \forall X.A \rrbracket$.

This is immediate since $\llbracket \forall X.A \rrbracket = \bigcap_{\Phi} \llbracket A[X \coloneqq \Phi] \rrbracket$.

$$\frac{X \vdash t : A}{\vdash t : \forall X.A} bad$$

$$\frac{X \vdash_{val} v : A}{\vdash_{val} v : \forall X.A}$$

We suppose $\nu \in \llbracket A[X \coloneqq \Phi] \rrbracket$ for all Φ , and show $\nu \in \llbracket \forall X.A \rrbracket$.

This is immediate since $\llbracket \forall X.A \rrbracket = \bigcap_{\Phi} \llbracket A[X \coloneqq \Phi] \rrbracket$.

$$\frac{X \vdash t : A}{\vdash t : \forall X.A}$$
bad

We suppose $t \in \llbracket A[X \coloneqq \Phi] \rrbracket^{\perp \perp}$ for all Φ , and show $t \in \llbracket \forall X.A \rrbracket^{\perp \perp}$.
Adequacy of For All Introduction

$$\frac{X \vdash_{val} v : A}{\vdash_{val} v : \forall X.A}$$

We suppose $v \in \llbracket A[X \coloneqq \Phi] \rrbracket$ for all Φ , and show $v \in \llbracket \forall X.A \rrbracket$.

This is immediate since $\llbracket \forall X.A \rrbracket = \bigcap_{\Phi} \llbracket A[X \coloneqq \Phi] \rrbracket$.

$$\frac{X \vdash t : A}{\vdash t : \forall X.A}$$
bac

We suppose $t \in \llbracket A[X := \Phi] \rrbracket^{\perp \perp}$ for all Φ , and show $t \in \llbracket \forall X.A \rrbracket^{\perp \perp}$.

However we have $\bigcap_{\Phi} \llbracket A[X \coloneqq \Phi] \rrbracket^{\perp \perp} \not\subseteq \llbracket \forall X.A \rrbracket^{\perp \perp} = \left(\bigcap_{\Phi} \llbracket A[X \coloneqq \Phi] \rrbracket \right)^{\perp \perp}$.

Properties of the System

Theorem (normalisation):

t : A implies $t * \varepsilon > v * \varepsilon$ for some value v.

Properties of the System

Theorem (normalisation):

t : A implies $t * \varepsilon > v * \varepsilon$ for some value v.

Theorem (safety for simple datatypes):

t : A implies $t * \varepsilon > v * \varepsilon$ for some value v : A.

PROPERTIES OF THE SYSTEM

Theorem (normalisation):

t : A implies $t * \varepsilon > v * \varepsilon$ for some value v.

Theorem (safety for simple datatypes):

t : A implies t $* \varepsilon > v * \varepsilon$ for some value v : A.

Theorem (consistency):

```
there is no closed term t : \bot.
```

Part III

Semantical Value Restriction

Derived Rules for Dependent Functions

$$\frac{\mathbf{x}: \mathbf{A} \vdash \mathbf{t}: \mathbf{B}[\mathbf{a} \coloneqq \mathbf{x}]}{\vdash_{\mathrm{val}} \lambda \mathbf{x}.\mathbf{t}: \forall \mathbf{a} \in \mathbf{A}.\mathbf{B}}$$

$$\frac{\vdash \mathbf{t} : \forall a \in A.B \quad \vdash_{val} \mathbf{v} : A}{\vdash \mathbf{t} \mathbf{v} : B[a \coloneqq \mathbf{v}]}$$

Derived Rules for Dependent Functions

$x : A \vdash t : B[a \coloneqq x]$	$\vdash t: \forall a \in A.B$	$\vdash_{val} v : A$
$\vdash_{val} \lambda x.t : \forall a \in A.B$	$\vdash t v : B[a \coloneqq v]$	

$$\frac{\frac{\vdash \mathbf{t}: \forall \mathbf{a} \in A.B}{\vdash \mathbf{t}: \forall \mathbf{a}.(\mathbf{a} \in A \Rightarrow B)}_{\forall \mathbf{t}}}{\vdash \mathbf{t}: \mathbf{v} \in A \Rightarrow B[\mathbf{a} \coloneqq \mathbf{v}]}_{\forall \mathbf{t}} \stackrel{\mathsf{Def}}{=} \frac{\frac{\vdash_{\mathsf{val}} \mathbf{v}: A}{\vdash_{\mathsf{val}} \mathbf{v}: \mathbf{v} \in A}}{\vdash \mathbf{v}: \mathbf{v} \in A}_{\Rightarrow_{e}} \uparrow$$

Derived Rules for Dependent Functions

$$\frac{\mathbf{x}: \mathbf{A} \vdash \mathbf{t}: \mathbf{B}[\mathbf{a} \coloneqq \mathbf{x}]}{\vdash_{\mathrm{val}} \lambda \mathbf{x}.\mathbf{t}: \forall \mathbf{a} \in \mathbf{A}.\mathbf{B}} \qquad \qquad \frac{\vdash \mathbf{t}: \forall \mathbf{a} \in \mathbf{A}.\mathbf{B} \quad \vdash_{\mathrm{val}} \mathbf{v}: \mathbf{A}}{\vdash \mathbf{t} \; \mathbf{v}: \mathbf{B}[\mathbf{a} \coloneqq \mathbf{v}]}$$

$$\frac{\frac{\vdash \mathbf{t}: \forall a \in A.B}{\vdash \mathbf{t}: \forall a.(a \in A \Rightarrow B)}_{\forall e}}{\vdash \mathbf{t}: \nu \in A \Rightarrow B[a \coloneqq \nu]}_{\forall e} \quad \frac{\frac{\vdash_{val} \nu: A}{\vdash_{val} \nu: \nu \in A}}{\vdash \nu: \nu \in A}_{\Rightarrow_e}$$

Value restriction breaks the compositionality of dependent functions.

// add_n_Zero : $\forall n {\in} nat$, add n Zero \equiv n

add_n_Zero (add Zero S[Zero]) : add (add Zero S[Zero]) Zero \equiv add Zero S[Zero]

We replace
$$\frac{\vdash t : \forall a \in A.B \quad \vdash_{val} v : A}{\vdash t v : B[a := v]} \quad by \quad \frac{\vdash t : \forall a \in A.B \quad \vdash u : A \quad \vdash u \equiv v}{\vdash t u : B[a := u]}$$

We replace
$$\frac{\vdash t : \forall a \in A.B \quad \vdash_{val} v : A}{\vdash t v : B[a := v]} \quad by \quad \frac{\vdash t : \forall a \in A.B \quad \vdash u : A \quad \vdash u \equiv v}{\vdash t u : B[a := u]}.$$

This requires changing
$$\frac{\vdash_{val} v : A}{\vdash_{val} v : v \in A} \quad into \quad \frac{\vdash t : A \quad \vdash t \equiv v}{\vdash t : t \in A}.$$

We replace
$$\frac{\vdash t : \forall a \in A.B \quad \vdash_{val} v : A}{\vdash t v : B[a := v]} \quad by \quad \frac{\vdash t : \forall a \in A.B \quad \vdash u : A \quad \vdash u \equiv v}{\vdash t u : B[a := u]}.$$

This requires changing
$$\frac{\vdash_{val} v : A}{\vdash_{val} v : v \in A} \quad into \quad \frac{\vdash t : A \quad \vdash t \equiv v}{\vdash t : t \in A}.$$

Can this rule be derived in the system?

We replace
$$\frac{\vdash t : \forall a \in A.B \quad \vdash_{val} \nu : A}{\vdash t \nu : B[a := \nu]} \quad \text{by} \quad \frac{\vdash t : \forall a \in A.B \quad \vdash u : A \quad \vdash u \equiv \nu}{\vdash t u : B[a := u]}$$

This requires changing
$$\frac{\vdash_{val} \nu : A}{\vdash_{val} \nu : \nu \in A} \quad \text{into} \quad \frac{\vdash t : A \quad \vdash t \equiv \nu}{\vdash t : t \in A}.$$

Can this rule be derived in the system?

$$\frac{\vdash \mathbf{t} : A \quad \vdash \mathbf{t} \equiv \mathbf{v}}{\frac{\vdash \mathbf{v} : A}{\vdash_{val} \mathbf{v} : A}} = \frac{\frac{\vdash \mathbf{v} : A}{\vdash_{val} \mathbf{v} : \mathbf{v} \in A}}{\frac{\vdash v : \mathbf{v} \in A}{\vdash \mathbf{v} : \mathbf{v} \in A} \quad \vdash \mathbf{t} \equiv \mathbf{v}} = \frac{\vdash \mathbf{v} : \mathbf{v} \in A}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v} = \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A} = \frac{\vdash \mathbf{v}}{\vdash \mathbf{v} : \mathbf{v} \in A}$$

Everything goes down to having a rule
$$\frac{\vdash v : A}{\vdash_{val} v : A}$$
.

Everything goes down to having a rule
$$\frac{\vdash v : A}{\vdash_{val} v : A}$$
.
It should not be confused with $\frac{\vdash_{val} v : A}{\vdash v : A}$.

Everything goes down to having a rule
$$\frac{\vdash v : A}{\vdash_{val} v : A}$$
.
It should not be confused with $\frac{\vdash_{val} v : A}{\vdash v : A}$.

Semantically, this requires that $v \in \llbracket A \rrbracket^{\perp \perp}$ implies $v \in \llbracket A \rrbracket$.

Everything goes down to having a rule
$$\frac{\vdash v : A}{\vdash_{val} v : A}$$
.
It should not be confused with $\frac{\vdash_{val} v : A}{\vdash v : A}$.

Semantically, this requires that $v \in \llbracket A \rrbracket^{\perp \perp}$ implies $v \in \llbracket A \rrbracket$.

The biorthogonal completion should not introduce new values.

Everything goes down to having a rule
$$\frac{\vdash v : A}{\vdash_{val} v : A}$$
.
It should not be confused with $\frac{\vdash_{val} v : A}{\vdash v : A}$.

Semantically, this requires that $v \in \llbracket A \rrbracket^{\perp \perp}$ implies $v \in \llbracket A \rrbracket$.

The biorthogonal completion should not introduce new values.

The rule seems reasonable, but it is hard to justify semantically.

We do not have $v \in \llbracket A \rrbracket^{\text{ll}}$ implies $v \in \llbracket A \rrbracket$ in every realizability model.

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We extend the system with a new term constructor $\delta_{\nu,w}$ such that $\delta_{\nu,w} * \pi > \nu * \pi$ iff $\nu \neq w$.

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We extend the system with a new term constructor $\delta_{\nu,w}$ such that $\delta_{\nu,w} * \pi > \nu * \pi$ iff $\nu \neq w$.

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We extend the system with a new term constructor $\delta_{\nu,w}$ such that $\delta_{\nu,w} * \pi > \nu * \pi$ iff $\nu \neq w$.

Idea of the proof with $\mathbb{I} = \{p \mid p \downarrow\}$:

- We assume $\nu \notin \llbracket A \rrbracket$ and show $\nu \notin \llbracket A \rrbracket^{\perp \perp}$.

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We extend the system with a new term constructor $\delta_{v,w}$ such that $\delta_{v,w} * \pi > v * \pi$ iff $v \neq w$.

- We assume $\nu \notin \llbracket A \rrbracket$ and show $\nu \notin \llbracket A \rrbracket^{\perp \perp}$.
- We need to find $\pi \in \llbracket A \rrbracket^{\perp}$ such that $v * \pi \Uparrow$.

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We extend the system with a new term constructor $\delta_{y,w}$ such that

$$\delta_{v,w} * \pi > v * \pi$$
 iff $v \neq w$.

- We assume $\nu \notin \llbracket A \rrbracket$ and show $\nu \notin \llbracket A \rrbracket^{\perp \perp}$.
- We need to find $\pi \in \llbracket A \rrbracket^{\perp}$ such that $\nu * \pi \uparrow$.
- We need to find π such that $v * \pi \uparrow$ and $\forall w \in \llbracket A \rrbracket, w * \pi \Downarrow$.

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We extend the system with a new term constructor $\delta_{y,w}$ such that

$$\delta_{v,w} * \pi > v * \pi$$
 iff $v \neq w$.

- We assume $\nu \notin \llbracket A \rrbracket$ and show $\nu \notin \llbracket A \rrbracket^{\perp \perp}$.
- We need to find $\pi \in \llbracket A \rrbracket^{\perp}$ such that $\nu * \pi \uparrow$.
- We need to find π such that $v * \pi \uparrow$ and $\forall w \in \llbracket A \rrbracket, w * \pi \Downarrow$.
- We can take $\pi = [\lambda x.\delta_{x,\nu}]\varepsilon$.

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We extend the system with a new term constructor $\delta_{y,w}$ such that

$$\delta_{\nu,w} * \pi > \nu * \pi$$
 iff $\nu \neq w$.

- We assume $\nu \notin \llbracket A \rrbracket$ and show $\nu \notin \llbracket A \rrbracket^{\perp \perp}$.
- We need to find $\pi \in \llbracket A \rrbracket^{\perp}$ such that $\nu * \pi \uparrow$.
- We need to find π such that $v * \pi \uparrow \uparrow$ and $\forall w \in \llbracket A \rrbracket, w * \pi \downarrow$.
- We can take $\pi = [\lambda x.\delta_{x,\nu}]\varepsilon$.
- $\nu * [\lambda x.\delta_{x,\nu}] \varepsilon > \lambda x.\delta_{x,\nu} * \nu \, . \, \varepsilon > \delta_{\nu,\nu} * \varepsilon \Uparrow$

We do not have $v \notin \llbracket A \rrbracket$ implies $v \notin \llbracket A \rrbracket^{\perp \perp}$ in every realizability model.

We extend the system with a new term constructor $\delta_{y,w}$ such that

$$\delta_{v,w} * \pi > v * \pi$$
 iff $v \neq w$.

- We assume $\nu \notin \llbracket A \rrbracket$ and show $\nu \notin \llbracket A \rrbracket^{\perp \perp}$.
- We need to find $\pi \in \llbracket A \rrbracket^{\perp}$ such that $\nu * \pi \Uparrow$.
- We need to find π such that $v * \pi \uparrow \uparrow$ and $\forall w \in \llbracket A \rrbracket, w * \pi \Downarrow$.
- We can take $\pi = [\lambda x.\delta_{x,\nu}]\varepsilon$.
- $\nu * [\lambda x.\delta_{x,\nu}] \varepsilon > \lambda x.\delta_{x,\nu} * \nu . \varepsilon > \delta_{\nu,\nu} * \varepsilon \Uparrow$
- $w * [\lambda x.\delta_{x,v}] \varepsilon > \lambda x.\delta_{x,v} * w.\varepsilon > \delta_{w,v} * \varepsilon > w * \varepsilon \Downarrow \text{ if } w \in \llbracket A \rrbracket$

Well-defined construction of equivalence and reduction

Problem: the definitions of (>) and (\equiv) are circular.

Well-defined construction of equivalence and reduction

Problem: the definitions of (>) and (\equiv) are circular.

We need to rely on a stratified construction of the two relations.

$$(\twoheadrightarrow_{i}) = (\succ) \cup \left\{ (\delta_{\nu,w} * \pi, \nu * \pi) \mid \exists j < i, \nu \neq_{j} w \right\}$$
$$(\equiv_{i}) = \left\{ (t, u) \mid \forall j \leq i, \forall \pi, \forall \sigma, t\sigma * \pi \downarrow_{j} \Leftrightarrow u\sigma * \pi \uparrow_{j} \right\}$$

We then take

$$(\twoheadrightarrow) = \bigcup_{i \in \mathbb{N}} (\twoheadrightarrow_i)$$
 and $(\equiv) = \bigcap_{i \in \mathbb{N}} (\equiv_i).$

CONCLUSION

Things That I did not Show

- 1) Syntax directed typing and subtyping rules using:
 - local subtyping judgments of the form $t\in A\subset B$,
 - choice operators like $\epsilon_{x\in A}(t\notin B)$ or $\epsilon_X(t\notin A)\text{,}$
 - an encoding of "neutral terms" into reduction.
- 2) Inductive types, coinductive types and recursion (more recent) using:
 - circular typing and subtyping proofs,
 - well-foundedness established using the size change principle.
- 3) Unreachable code and refutation of patterns.

FUTURE WORK

Practical issues (work in progress):

- Composing programs that are proved terminating.
- Extensible records and variant types (inference).

Toward a practical language:

- Compiler using typing informations for optimisations.
- Built-in types (int64, float) with their specification.

Theoretical questions:

- Can we handle more side-effects? (mutable cells, arrays)
- What can we realise with (variations of) $\delta_{v,w}$?
- Can we extend the system with quotient types?
- Can we formalise mathematics in the system?

References for Technical Details

A Classical Realizability Model for a Semantical Value Restriction R. Lepigre (ESOP 2016) https://lepigre.fr/files/docs/lepigre2016_svr.pdf

Practical Subtyping for System F with Sized (Co-)Induction R. Lepigre and C. Raffalli (submitted in 2017) https://lepigre.fr/files/docs/lepigre2017_subml.pdf

Semantics and Implementation of an Extension of ML for Proving Programs R. Lepigre, PhD manuscript https://github.com/rlepigre/phd/

Thanks!