PRACTICAL CURRY-STYLE USING CHOICE OPERATORS,
LOCAL SUBTYPING AND CIRCULAR PROOFS

4

(s22ic2 —~ DEDUCH
INVENTEURS DU MONDE NUMERIQUE I— EAM

RODOLPHE LEPIGRE

OUR GOAL: A CLASSICAL, CURRY-STYLE PROOF SYSTEM

PML,: ML-like language with support for proofs of programs

Non-exhaustive list of features:
- Sum types (variants) and product types (records)
- Recursion, effects, call-by-value evaluation
- Curry-style quantifiers (polymorphism, type abstraction),
- Inductive and coinductive types (with sizes)
- Termination checking (only required for proofs)
- Untyped terms as the individuals of the underlying logic
- Restriction types A [P with a “semantic predicate” P

- Membership type t € A used to encode dependent types

1/ 27

OUR GOAL: A CLASSICAL, CURRY-STYLE PROOF SYSTEM

PML,: ML-like language with support for proofs of programs

Non-exhaustive list of features:
- Sum types (variants) and product types (records)
- Recursion, effects, call-by-value evaluation
- Curry-style quantifiers (polymorphism, type abstraction),
- Inductive and coinductive types (with sizes)
- Termination checking (only required for proofs)
- Untyped terms as the individuals of the underlying logic
- Restriction types A [P with a “semantic predicate” P

- Membership type t € A used to encode dependent types

1/ 27

OUR GOAL: A CURRY-STYLE SYSTEM

Non-exhaustive list of features:

Sum types (variants) and product types (records)

Recursion

Curry-style quantifiers (polymorphism, type abstraction),

Inductive and coinductive types (with sizes)

Termination checking

1/ 27

SYSTEM F A LA CHURCH

'Ft:A=B TRHu:A

Tx:AFx: A 'EFtu:B

Mx:AFt:B
I'-Axt:A=B

r'-t:A X¢rT N-=t:VvX.A
' AXt: VXA 'H1tB:A[X:=B]

2/ 27

SYSTEM F A LA CURRY

'Ft:A=B TRHu:A

NMx:AFEx: A N''-tu:B

Mx:AFt:B
N'-Axt: A=B

r’|t:A Xg¢grT M= t:VX.A
'-1t:¥VX.A '-1t:A[X:=B]

3 /27

How CAN WE MAKE CURRY-STYLE PRACTICAL?

Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent and
Undecidable (Joe B. Wells, LICS 1994)

Is that really a problem?

427

How CAN WE MAKE CURRY-STYLE PRACTICAL?

Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent and
Undecidable (Joe B. Wells, LICS 1994)

Is that really a problem? No!

How can we implement rules that are not syntax-directed?

427

How CAN WE MAKE CURRY-STYLE PRACTICAL?

Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent and
Undecidable (Joe B. Wells, LICS 1994)

Is that really a problem? No!

How can we implement rules that are not syntax-directed? We don't!

Main idea: completely reformulate the system using subtyping

427

MANY DIFFERENT FORMS OF SUBTYPING

Our extension of System F has many forms of subtyping:
- On quantifiers VX.(A = B) C (VX.A) = (VX.B)
On sums (or variants) [T|F] C [T|FIM]
On products (records) {x : R;y:R;z:R} C{x:R;y:R}

On (sized) inductive types 1 X.A C pu X.A (when T < k)

And similarly on (sized) coinductive types

5/ 27

MANY DIFFERENT FORMS OF SUBTYPING

Our extension of System F has many forms of subtyping:
- On quantifiers VX.(A = B) C (VX.A) = (VX.B)
On sums (or variants) [T|F] C [T|FIM]
On products (records) {x : R;y:R;z:R} C{x:R;y:R}

On (sized) inductive types 1 X.A C pu X.A (when T < k)

And similarly on (sized) coinductive types

Remark: PML, also has (A [P) CAand (t€ A)C A

5/ 27

PART I GOING SYNTAX-DIRECTED WITH LOCAL SUBTYPING

PART II CHOICE OPERATORS AND SEMANTICS

PART III SIZED TYPES, CIRCULAR PROOFS AND TERMINATION

6/ 27

PART I

GOING SYNTAX-DIRECTED WITH LOCAL SUBTYPING

727

TOWARD SYNTAX-DIRECTED TYPING RULES

IMx:AFt:B 'Ht:A=B ThHu:A
Tx:AFx: A '-Axt: A=B 'CFtu:B
r''-t: A X¢r I=t:vXA
'=t:vX.A I'-t:A[X:=B]

8/ 27

TOWARD SYNTAX-DIRECTED TYPING RULES

IMx:AFt:B 'Ht:A=B ThHu:A
Tx:AFx: A '-Axt: A=B 'CFtu:B

Remarks on what needs to be changed:

- Quantifier rules definitely need to go

8/ 27

TOWARD SYNTAX-DIRECTED TYPING RULES

IMx:AFt:B 'Ht:A=B ThHu:A
Tx:AFx: A '-Axt: A=B 'CFtu:B

Remarks on what needs to be changed:
- Quantifier rules definitely need to go

- Arrow introduction is too restrictive (only function type)

8/ 27

TOWARD SYNTAX-DIRECTED TYPING RULES

IMx:AFt:B 'Ht:A=B ThHu:A
Tx:AFx: A '-Axt: A=B 'CFtu:B

Remarks on what needs to be changed:
- Quantifier rules definitely need to go
- Arrow introduction is too restrictive (only function type)

- Arrow elimination rule is fine (no assumption on B)

8/ 27

REVISITING ARROW INTRODUCTION: NAIVE SUBTYPING

ITx:AFt:B 'Ft:A=B ThFHu:A
ITx:AFx: A 'EAxt:A=B 'CFtu:B

We should be able to prove judgments of the form I' - Ax.t : VX.C

9 /27

REVISITING ARROW INTRODUCTION: NAIVE SUBTYPING

ITx:AFt:B 'Ft:A=B ThFHu:A
ITx:AFx: A 'EAxt:A=B 'CFtu:B

We should be able to prove judgments of the form I' - Ax.t : VX.C

What about the following rule?

A=BCC T, x:AFt:B
'Eaxt:C

9 /27

REVISITING ARROW INTRODUCTION: NAIVE SUBTYPING

ITx:AFt:B 'Ft:A=B ThFHu:A
ITx:AFx: A 'EAxt:A=B 'CFtu:B

We should be able to prove judgments of the form I' - Ax.t : VX.C

What about the following rule?

A=BCC T, x:AFt:B
'Eaxt:C

Not good enough (eigenvariable constraint not expressible)

F''—t:A X¢rT
N'=t:vX.A

9 /27

REVISITING ARROW INTRODUCTION: JUDGMENT IMPLICATION

We may rather rely on a form of “judgment implication”

THFAt:A=>B) C(THAXt:C) T,x:AFt:B
' Ax.t: C

10 / 27

REVISITING ARROW INTRODUCTION: JUDGMENT IMPLICATION

We may rather rely on a form of “judgment implication”

THFAt:A=>B) C(THAXt:C) T,x:AFt:B
' Ax.t: C

Example:

THFAMAX: X=2X)CTHFM™Mx: X=>X) X¢rT
TEAxx: X=X) C(TF Ax.x : ¥XX=X) x:XkFx:X
NEAxx : VX X=X

10 / 27

REVISITING ARROW INTRODUCTION: LOCAL SUBTYPING

After removing the redundant information we get the rule

I-Aa&xt:A=BCC I, x:AFt:B
' Ax.t: C

11/ 27

REVISITING ARROW INTRODUCTION: LOCAL SUBTYPING

After removing the redundant information we get the rule

I'-Aa&xt:A=BCC I,x:AFt:B
' Ax.t: C

The previous example then becomes

FNEAaxx: X=XC X=X X¢T
NEAxXx: X=X CVYXX=X Nx: XEFx:X
N Axx : VX X=X

11/ 27

TYPE SYSTEM FOR (CURRY-STYLE) SYSTEM F

NMx:AFx:ACB l'N-t:A=B TkFu:A

Ix:AFx:B 'Etu:B

I'Exxt:A=BCC TI,x:AFt:B
' ax.t:C

Nx:CHFx:CCA INIx:CHtx:BCD

I'HFt: ACA I'Ft:A=>BC C=D
I'HFt:ACB X¢rT '-t: AX:=C] C B
-t:A CVX.B Fr'—t:vX.ACB

12/ 27

CAN BE IMPLEMENTED WITH STANDARD UNIFICATION VARIABLES

Nx:AFx:ACB l'N-t:uU=B TrFu:U

Mx:AFx:B '-tu:B

IrM&xt:U=VvVCcC L x:UFt:V

'=ax.t:C
A =B Mx:CHFx:CCA TIx:CFHtx:BCD
'HFt: ACB I'rt:A=>BC C=D
I'Ft:ACB X¢grT N=t:AX=U] C B
'Ht: A CVX.B I't:vX.ACB

13 / 27

PART II

CHOICE OPERATORS AND SEMANTICS

14 | 27

ANOTHER FORMULATION OF THE SYSTEM USING CHOICE OPERATORS

We use “symbols” like e, .2(t € B) or ex(t € A) instead of free variables

t,u = x| Axt|tu|eca(tgB) (A)
A,B = X|A=B| VXA |ex(t¢A) (F)

15 / 27

ANOTHER FORMULATION OF THE SYSTEM USING CHOICE OPERATORS

We use “symbols” like e, .2(t € B) or ex(t € A) instead of free variables

t,u = x| Axt|tu|eca(tgB) (A)
A,B = X|A=B| VXA |ex(t¢A) (F)

Choice operators carry a representation of their semantics:
- €4ca(t € B) denotes “a term u in A such that t[x:=u] is not in B”
- ex(t ¢ A) denotes “a type C such that t is not in A[X:=C]”

15 / 27

ANOTHER FORMULATION OF THE SYSTEM USING CHOICE OPERATORS

We use “symbols” like e, .2(t € B) or ex(t € A) instead of free variables

t,u = x| Axt|tu|eca(tgB) (A)
A,B = X|A=B| VXA |ex(t¢A) (F)

Choice operators carry a representation of their semantics:
- €4ca(t € B) denotes “a term u in A such that t[x:=u] is not in B”

- ex(t ¢ A) denotes “a type C such that t is not in A[X:=C]”

Remark: in e, ,(t ¢ B) we enforce FV(t) C {x}

15 / 27

REDUCIBILITY CANDIDATE SEMANTICS AND ADEQUACY
We interpret terms as well as types
The domains of interpretation for terms and types are:

- [A] ={t € A | t contains no “c”}
- [Fl={d C[A]I N, Cd C N and & is “saturated”}

16 | 27

REDUCIBILITY CANDIDATE SEMANTICS AND ADEQUACY
We interpret terms as well as types
The domains of interpretation for terms and types are:

- [A] ={t € A | t contains no “c”}
- [Fl={d C[A] | Ny, € d C N and P is “saturated”}

Theorem (adequacy):
- if t: A is derivable then [t] € [A]
- if t: A C B is derivable and [[t] € [A] then [t] € [B]

16 | 27

REDUCIBILITY CANDIDATE SEMANTICS AND ADEQUACY

We interpret terms as well as types

The domains of interpretation for terms and types are:
- [A] ={t € A | t contains no “c”}
- [Fl={® C[A]| Ny C ® C N and & is “saturated”}

Theorem (adequacy):
- if t: A is derivable then [t] € [A]
- if t: A C B is derivable and [[t] € [A] then [t] € [B]

Proof: by induction on the typing / subtyping derivation

16 | 27

DEFINITION OF THE INTERPRETATION FONCTIONS

[-1: A — [A] is defined as:

[x] = x [Ax.t] = Ax.[t] [t ull = [t10wl

[exca(t € B)I = u € [A], such that [tix:=ul] ¢ [B] if possible

17 | 27

DEFINITION OF THE INTERPRETATION FONCTIONS
[-1: A — [A] is defined as:
[x] = x [Ax.t] = M [t] [t ul = [thTul
[excalt € B)] = u € [A], such that [tlx:=ul] ¢ [B] if possible
[-1:F — [F] is defined as:
[A=Bl=({telAllVYuelAl,tue [Bl}
[VXA] = N [A[X:=®]]

de[F]

[ex(t £ A)] = & € [F1, such that [t] ¢ [A[X = ®]] if possible

17 | 27

EXAMPLES OF ADEQUATE TYPING AND SUBTYPING RULES

Mt:A=B CC tlxi=e,a(t¢B)]:B
Ax.t: C

18 / 27

EXAMPLES OF ADEQUATE TYPING AND SUBTYPING RULES

Mt:A=B CC tlxi=e,a(t¢B)]:B
Ax.t: C

‘SXEA(t¢B) A g C
ExEA(t g B) :C

18 / 27

EXAMPLES OF ADEQUATE TYPING AND SUBTYPING RULES

Mt:A=B CC tlxi=e,a(t¢B)]:B
Ax.t: C

‘SXEA(t¢B) tA g C

EXEA(th) :C
t:AX:=C] C B
t:VX.ACB

18 / 27

TYPE SYSTEM FOR (CURRY-STYLE) SYSTEM F (¢ VERSION)

exealtgB): A CC t:A=B u:A

exealt€B): C tu:B

Mt:A=B CC tlxi=e(t¢B)]:B
Ax.t: C

Execlt x¢D):CC A tectx¢gD):BCD

t:ACA t:A=>BCC=D
t: A C BX:=ex(t¢B) t:AX:=C] C B
t: A C VX.B t:VX.ACB

19 [27

CAN STILL BE IMPLEMENTED WITH STANDARD UNIFICATION VARIABLES

ExealtgB): A CC t:U=B u:lU
€xealtgB): C tu:B
Mt:U=>VCC tii=gutgV)]: Vv
Ax.t: C
A=B exec(tx¢D): CC A te(tx¢D):BCD

t:ACB t:A=>BCC=D
t: A C BXi=¢ex(t € B)] t: AX:=U] CB
t: A CVXB t:¥YX.ACB

20/ 27

WHY REFORMULATE THE SYSTEM WITH CHOICE OPERATORS?

Advantages of this presentation:
- Maximal weakening is applied automatically
- Judgments easier to recognise when building circular proofs

- The “free variables” carry their semantics

21/ 27

WHY REFORMULATE THE SYSTEM WITH CHOICE OPERATORS?

Advantages of this presentation:
- Maximal weakening is applied automatically
- Judgments easier to recognise when building circular proofs

- The “free variables” carry their semantics

Only one drawback:

- Terms may become very big

21/ 27

PART III

SIZED TYPES, CIRCULAR PROOFS, AND TERMINATION

22 [27

EXTENDING THE SYSTEM WITH (SIZED) INDUCTIVE TYPES

We add a new type former to the system:

tyu o= x| Ax.t | tu|ecaltgB) (A)
y,B = X|A=B| VXA |ex(tgA) | n XA (F)
T,K u= ot | kK+T1] 00| e -t € A)|e A L B) ()

Fixpoints are indexed with “syntactic ordinals” (interpreted as ordinals)

23 [27

EXTENDING THE SYSTEM WITH (SIZED) INDUCTIVE TYPES

We add a new type former to the system:

tyu o= x| Ax.t | tu|ecaltgB) (A)
y,B = X|A=B| VXA |ex(tgA) | n XA (F)
T,K u= ot | kK+T1] 00| e -t € A)|e A L B) ()

Fixpoints are indexed with “syntactic ordinals” (interpreted as ordinals)

[HTXA]] = U [A[X:= H‘OXA]]]

o<l

23 [27

EXTENDING THE SYSTEM WITH (SIZED) INDUCTIVE TYPES

We add a new type former to the system:

tyu o= x| Ax.t | tu|ecaltgB) (A)
y,B = X|A=B| VXA |ex(tgA) | n XA (F)
T,K u= ot | kK+T1] 00| e -t € A)|e A L B) ()

Fixpoints are indexed with “syntactic ordinals” (interpreted as ordinals)

[HTXA]] = U [A[X:= H‘OXA]]]

o<l

[x +11 =[] +1 [oo]l = “a large enough ordinal”

23 [27

SUBTYPING RUES FOR INDUCTIVE TYPES

Adequate rules for the least fixpoint constructor:

t: A C BXi=u X.B] t:ACBX=uXB 7T<kK
t:AC u X.B t:AC puXB

t: AX:=p.X.Al C B

T W XA CB with T = ¢, (t € AX:=p X.A])

24 [27

SUBTYPING RUES FOR INDUCTIVE TYPES

Adequate rules for the least fixpoint constructor:

t: A C BXi=u X.B] t:ACBX=uXB 7T<kK
t:AC u X.B t:AC puXB

t: AX:=p.X.Al C B

T W XA CB with T = ¢, (t € AX:=p X.A])

Question: when do we stop the unfolding?

24 [27

INTRODUCING A CYCLIC STRUCTURE (GENERALISATION, INDUCTION)

25 [27

INTRODUCING A CYCLIC STRUCTURE (GENERALISATION, INDUCTION)

Yo (A C B)
Alx = k] C Blo := k]

25 [27

INTRODUCING A CYCLIC STRUCTURE (GENERALISATION, INDUCTION)

Yo (A C B)
Alx = k] C Blo := k]

[Va (A CB)]

Alx = ex(A 2 B)] C Blo = e(A ¢ B)]
Yax (A CB)

i

25 [27

FIXPOINT COMBINATOR AND RECURSION

We type the fixpoint combinator with a simple unrolling

t(fixt) : A
fixt: A

And we allow circularity in typing proofs (as with subtyping proofs)

Vo (t:A)]
Vo (t:A) t: A[cx = eyt ¢ A)]i
t: Alx = k] Vo (t:A)

26 [27

REFERENCES FOR TECHNICAL DETAILS

Practical Subtyping for System F with Sized (Co-)Induction
R. Lepigre and C. Raffalli, under revision
hteps://lepigre.fr/files/docs/lepigre2017_subml.pdf
https://github.com/rlepigre/subml
https://rlepigre.github.io/subml

Semantics and Implementation of an Extension of ML for Proving Programs
R. Lepigre, PhD manuscript

https://github.com/rlepigre/phd

https://github.com/rlepigre/pml

27 | 27

Thanks!

