
Practical Curry-Style using Choice Operators,
Local Subtyping and Circular Proofs

Rodolphe Lepigre, Christophe Raffalli

Our goal: a Curry-style system

Non-exhaustive list of features:

Sum types (variants) and product types (records)

Recursion

(polymorphism, type abstraction),

Inductive and coinductive types (with sizes)

Termination checking

classical, proof

Membership type t u A used to encode dependent types

Restriction types A v P with a {semantic predicate| P

Untyped terms as the individuals of the underlying logic

(only required for proofs)

Curry-style quanti}ers

, e~fects, call-by-value evaluation

PML�: ML-like language with support for proofs of programs

1 / 27

Our goal: a Curry-style system

Non-exhaustive list of features:

Sum types (variants) and product types (records)

Recursion

(polymorphism, type abstraction),

Inductive and coinductive types (with sizes)

Termination checking

classical, proof

Membership type t u A used to encode dependent types

Restriction types A v P with a {semantic predicate| P

Untyped terms as the individuals of the underlying logic

(only required for proofs)

Curry-style quanti}ers

, e~fects, call-by-value evaluation

PML�: ML-like language with support for proofs of programs

1 / 27

Our goal: a Curry-style system

Non-exhaustive list of features:

Sum types (variants) and product types (records)

Recursion

(polymorphism, type abstraction),

Inductive and coinductive types (with sizes)

Termination checking

classical, proof

Membership type t u A used to encode dependent types

Restriction types A v P with a {semantic predicate| P

Untyped terms as the individuals of the underlying logic

(only required for proofs)

Curry-style quanti}ers

, e~fects, call-by-value evaluation

PML�: ML-like language with support for proofs of programs

1 / 27

System F à la Church

w x t : Ay B w x z : A
w, { : A x { : A w x t z : B

w, { : A x t : B
w x |{.t : Ay B

w x t : A X } w w x t : ~X.A
w x �X.t : ~X.A w x t B : A[X�B]

2 / 27

System F à la Curry

w x t : Ay B w x z : A
w, { : A x { : A w x t z : B

w, { : A x t : B
w x |{.t : Ay B

w x t : A X } w w x t : ~X.A
w x t : ~X.A w x t : A[X�B]

3 / 27

How can we make Curry-style practical?

Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent and

Undecidable (Joe B. Wells, LICS 1994)

Is that really a problem?

4 / 27

How can we make Curry-style practical?

Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent and

Undecidable (Joe B. Wells, LICS 1994)

Is that really a problem?

How can we implement rules that are not syntax-directed?

No!

4 / 27

How can we make Curry-style practical?

Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent and

Undecidable (Joe B. Wells, LICS 1994)

Is that really a problem?

How can we implement rules that are not syntax-directed?

Main idea: completely reformulate the system using subtyping

We don't!

No!

4 / 27

Many different forms of subtyping

Our extension of System F has many forms of subtyping:

On quanti}ers ~X.(AyB) � (~X.A)y (~X.B)

� �� � � �On sums (or variants) T �F � T F M

� � � �On products (records) { : R ; � : R ; � : R � { : R ; � : R

On (sized) inductive types � X.A � � X.A (when � � �)� �

And similarly on (sized) coinductive types

5 / 27

Many different forms of subtyping

Our extension of System F has many forms of subtyping:

On quanti}ers ~X.(AyB) � (~X.A)y (~X.B)

� �� � � �On sums (or variants) T �F � T F M

� � � �On products (records) { : R ; � : R ; � : R � { : R ; � : R

On (sized) inductive types � X.A � � X.A (when � � �)� �

And similarly on (sized) coinductive types

� � � �Remark: PML� also has A v P � A and t u A � A

5 / 27

Part III Going syntax-directed with local subtyping

Part III Choice operators and semantics

Part III Sized types, circular proofs and termination

6 / 27

Part I

Going syntax-directed with local subtyping

7 / 27

Toward syntax-directed typing rules

w, { : A x t : B w x t : Ay B w x z : A
w, { : A x { : A w x |{.t : Ay B w x t z : B

w x t : A X } w w x t : ~X.A
w x t : ~X.A w x t : A[X�B]

8 / 27

Toward syntax-directed typing rules

w, { : A x t : B w x t : Ay B w x z : A
w, { : A x { : A w x |{.t : Ay B w x t z : B

Remarks on what needs to be changed:

Quanti}er rules de}nitely need to go

w x t : A X } w w x t : ~X.A
w x t : ~X.A w x t : A[X�B]

8 / 27

Toward syntax-directed typing rules

w, { : A x t : B w x t : Ay B w x z : A
w, { : A x { : A w x |{.t : Ay B w x t z : B

Remarks on what needs to be changed:

Quanti}er rules de}nitely need to go

Arrow introduction is too restrictive (only function type)

w x t : A X } w w x t : ~X.A
w x t : ~X.A w x t : A[X�B]

8 / 27

Toward syntax-directed typing rules

w, { : A x t : B w x t : Ay B w x z : A
w, { : A x { : A w x |{.t : Ay B w x t z : B

Remarks on what needs to be changed:

Quanti}er rules de}nitely need to go

Arrow introduction is too restrictive (only function type)

Arrow elimination rule is }ne (no assumption on B)

w x t : A X } w w x t : ~X.A
w x t : ~X.A w x t : A[X�B]

8 / 27

Revisiting arrow introduction: naive subtyping

w, { : A x t : B w x t : Ay B w x z : A
w, { : A x { : A w x |{.t : Ay B w x t z : B

We should be able to prove judgments of the form w x |{.t : ~X.C

9 / 27

Revisiting arrow introduction: naive subtyping

w, { : A x t : B w x t : Ay B w x z : A
w, { : A x { : A w x |{.t : Ay B w x t z : B

We should be able to prove judgments of the form w x |{.t : ~X.C

What about the following rule?

AyB � C w, { : A x t : B
w x |{.t : C

9 / 27

Revisiting arrow introduction: naive subtyping

w, { : A x t : B w x t : Ay B w x z : A
w, { : A x { : A w x |{.t : Ay B w x t z : B

We should be able to prove judgments of the form w x |{.t : ~X.C

What about the following rule?

AyB � C w, { : A x t : B
w x |{.t : C

Not good enough (eigenvariable constraint not expressible)

w x t : A X } w
w x t : ~X.A

9 / 27

Revisiting arrow introduction: judgment implication

We may rather rely on a form of {judgment implication|

� � � �w x |{.t : Ay B � w x |{.t : C w, { : A x t : B
w x |{.t : C

10 / 27

Revisiting arrow introduction: judgment implication

We may rather rely on a form of {judgment implication|

� � � �w x |{.t : Ay B � w x |{.t : C w, { : A x t : B
w x |{.t : C

Example:

� � � �w x |{.{ : Xy X � w x |{.{ : Xy X X } w
� � � �w x |{.{ : Xy X � w x |{.{ : ~X.Xy X w, { : X x { : X

w x |{.{ : ~X.Xy X

10 / 27

Revisiting arrow introduction: local subtyping

A�ter removing the redundant information we get the rule

w x |{.t : Ay B � C w, { : A x t : B
w x |{.t : C

11 / 27

Revisiting arrow introduction: local subtyping

A�ter removing the redundant information we get the rule

w x |{.t : Ay B � C w, { : A x t : B
w x |{.t : C

The previous example then becomes

w x |{.{ : Xy X � XyX X } w
w x |{.{ : Xy X � ~X.XyX w, { : X x { : X

w x |{.{ : ~X.Xy X

11 / 27

Type system for (Curry-style) System F

w, { : A x { : A � B w x t : Ay B w x z : A
w, { : A x { : B w x t z : B

w x |{.t : Ay B � C w, { : A x t : B
w x |{.t : C

w, { : C x { : C � A w, { : C x t { : B � D
w x t : A � A w x t : Ay B � CyD

w x t : A � B X } w w x t : A[X�C] � B
w x t : A � ~X.B w x t : ~X.A � B

12 / 27

Can be implemented with standard unification variables

w, { : A x { : A � B w x t : Uy B w x z : U
w, { : A x { : B w x t z : B

w x |{.t : Uy V � C w, { : U x t : V
w x |{.t : C

A = B w, { : C x { : C � A w, { : C x t { : B � D
w x t : A � B w x t : Ay B � CyD

w x t : A � B X } w w x t : A[X�U] � B
w x t : A � ~X.B w x t : ~X.A � B

13 / 27

Part II

Choice operators and semantics

14 / 27

Another formulation of the system using choice operators

We use {symbols| like � (t } B) or � (t }A) instead of free variables{uA X

� �t , z ::= { � |{.t � t z � � (t } B) �{uA

� �A, B ::= X � AyB � ~X.A � � (t }A) �X

15 / 27

Another formulation of the system using choice operators

We use {symbols| like � (t } B) or � (t }A) instead of free variables{uA X

� �t , z ::= { � |{.t � t z � � (t } B) �{uA

� �A, B ::= X � AyB � ~X.A � � (t }A) �X

Choice operators carry a representation of their semantics:

� (t } B) denotes {a term z in A such that t[{�z] is not in B|{uA

� (t }A) denotes {a type C such that t is not in A[X�C]|X

15 / 27

Another formulation of the system using choice operators

We use {symbols| like � (t } B) or � (t }A) instead of free variables{uA X

� �t , z ::= { � |{.t � t z � � (t } B) �{uA

� �A, B ::= X � AyB � ~X.A � � (t }A) �X

Choice operators carry a representation of their semantics:

� (t } B) denotes {a term z in A such that t[{�z] is not in B|{uA

� (t }A) denotes {a type C such that t is not in A[X�C]|X

� � � �Remark: in � (t } B) we enforce FV t � {{uA

15 / 27

Reducibility candidate semantics and adequacy

We interpret terms as well as types

The domains of interpretation for terms and types are:

	
 � �� = t u � � t contains no {�|

	
 	
� �� = � � � � N � � � N and � is {saturated|0

16 / 27

Reducibility candidate semantics and adequacy

We interpret terms as well as types

The domains of interpretation for terms and types are:

	
 � �� = t u � � t contains no {�|

	
 	
� �� = � � � � N � � � N and � is {saturated|0

Theorem (adequacy):

	
 	
if t : A is derivable then t u A
	
 	
 	
 	
if t : A � B is derivable and t u A then t u B

16 / 27

Reducibility candidate semantics and adequacy

We interpret terms as well as types

The domains of interpretation for terms and types are:

	
 � �� = t u � � t contains no {�|

	
 	
� �� = � � � � N � � � N and � is {saturated|0

Theorem (adequacy):

	
 	
if t : A is derivable then t u A
	
 	
 	
 	
if t : A � B is derivable and t u A then t u B

Proof: by induction on the typing / subtyping derivation

16 / 27

Definition of the interpretation fonctions

	
 	
- : � � � is de}ned as:

	
 	
 	
 	
 	
 	
{ = { |{.t = |{. t t z = t z

	
 	
 	
 	
� (t } B) = z u A , such that t[{�z] } B if possible{uA

17 / 27

Definition of the interpretation fonctions

	
 	
- : � � � is de}ned as:

	
 	
 	
 	
 	
 	
{ = { |{.t = |{. t t z = t z

	
 	
 	
 	
� (t } B) = z u A , such that t[{�z] } B if possible{uA

	
 	
- : � � � is de}ned as:

	
 	
 	
 	
� �AyB = t u � � ~ z u A , t z u B

	
 	
 	
��~X.A = A X � � � = ��
	
�u �

	
 	
 	
 	
��� (t }A) = � u � , such that t } A X � � if possibleX

17 / 27

Examples of adequate typing and subtyping rules

|{.t : Ay B � C t[{�� (t } B)] : B{uA

|{.t : C

18 / 27

Examples of adequate typing and subtyping rules

|{.t : Ay B � C t[{�� (t } B)] : B{uA

|{.t : C

� (t } B) : A � C{uA

� (t } B) : C{uA

18 / 27

Examples of adequate typing and subtyping rules

|{.t : Ay B � C t[{�� (t } B)] : B{uA

|{.t : C

� (t } B) : A � C{uA

� (t } B) : C{uA

t : A[X�C] � B
t : ~X.A � B

18 / 27

Type system for (Curry-style) System F (� version)

� (t } B) : A � C t : AyB z : A{uA

t z : B� (t } B) : C{uA

|{.t : Ay B � C t[{�� (t } B)] : B{uA

|{.t : C

� (t { }D) : C � A t � (t { }D) : B � D{uC {uC

t : A � A t : AyB � CyD

t : A � B[X�� (t } B)] t : A[X�C] � BX

t : A � ~X.B t : ~X.A � B

19 / 27

Can still be implemented with standard unification variables

� (t } B) : A � C t : UyB z : U{uA

t z : B� (t } B) : C{uA

|{.t : Uy V � C t[{�� (t } V)] : V{uU

|{.t : C

A = B � (t { }D) : C � A t � (t { }D) : B � D{uC {uC

t : A � B t : AyB � CyD

t : A � B[X�� (t } B)] t : A[X�U] � BX

t : A � ~X.B t : ~X.A � B

20 / 27

Why reformulate the system with choice operators?

Advantages of this presentation:

Maximal weakening is applied automatically

Judgments easier to recognise when building circular proofs

The {free variables| carry their semantics

21 / 27

Why reformulate the system with choice operators?

Advantages of this presentation:

Maximal weakening is applied automatically

Judgments easier to recognise when building circular proofs

The {free variables| carry their semantics

Only one drawback:

Terms may become very big

21 / 27

Part III

Sized types, circular proofs, and termination

22 / 27

Extending the system with (sized) inductive types

We add a new type former to the system:

� �t , z ::= { � |{.t � t z � � (t } B) �{uA

� �A, B ::= X � AyB � ~X.A � � (t }A) � � X.A �X �

� � � � � ��, � ::= � � � +1 � � � � t u A � � A � B O� <� �

Fixpoints are indexed with {syntactic ordinals| (interpreted as ordinals)

23 / 27

Extending the system with (sized) inductive types

We add a new type former to the system:

� �t , z ::= { � |{.t � t z � � (t } B) �{uA

� �A, B ::= X � AyB � ~X.A � � (t }A) � � X.A �X �

� � � � � ��, � ::= � � � +1 � � � � t u A � � A � B O� <� �

Fixpoints are indexed with {syntactic ordinals| (interpreted as ordinals)

	
 	
� X.A = A[X�� X.A]�� o
	
o< �

23 / 27

Extending the system with (sized) inductive types

We add a new type former to the system:

� �t , z ::= { � |{.t � t z � � (t } B) �{uA

� �A, B ::= X � AyB � ~X.A � � (t }A) � � X.A �X �

� � � � � ��, � ::= � � � +1 � � � � t u A � � A � B O� <� �

Fixpoints are indexed with {syntactic ordinals| (interpreted as ordinals)

	
 	
� X.A = A[X�� X.A]�� o
	
o< �

	
 	
 	
� +1 = � +1 � = {a large enough ordinal| �

23 / 27

Subtyping rues for inductive types

Adequate rules for the least }xpoint constructor:

t : A � B[X�� X.B] t : A � B[X�� X.B] � < �� �

t : A � � X.B t : A � � X.B� �

t : A[X�� X.A] � B� � �with � = � t u A[X�� X.A]� <� �t : � X.A � B�

24 / 27

Subtyping rues for inductive types

Adequate rules for the least }xpoint constructor:

t : A � B[X�� X.B] t : A � B[X�� X.B] � < �� �

t : A � � X.B t : A � � X.B� �

t : A[X�� X.A] � B� � �with � = � t u A[X�� X.A]� <� �t : � X.A � B�

Question: when do we stop the unfolding?

24 / 27

Introducing a cyclic structure (generalisation, induction)

A � B � ({ } B) : A � B{uA

t : A � B A � B

25 / 27

Introducing a cyclic structure (generalisation, induction)

A � B � ({ } B) : A � B{uA

t : A � B A � B

� �~� A � B
� �� �A � � � � B � � �

25 / 27

Introducing a cyclic structure (generalisation, induction)

A � B � ({ } B) : A � B{uA

t : A � B A � B

� �~� A � B
� �� �A � � � � B � � �

i� ���~� A � B
� blablablaaaabla

� � � �� �� �A � � � A � B � B � � � A � B� � i
� �~� A � B

25 / 27

Fixpoint combinator and recursion

We type the }xpoint combinator with a simple unrolling

� �t }x t : A
}x t : A

And we allow circularity in typing proofs (as with subtyping proofs)

i� ���~� t : A
� ba

� � � ���~� t : A t : A � � � t } A� i
� ���t : A � � � ~� t : A

26 / 27

References for Technical Details

Practical Subtyping for System F with Sized (Co-)Induction

R. Lepigre and C. Ra~falli, under revision

https://lepigre.fr/}les/docs/lepigre2017_subml.pdf

https://github.com/rlepigre/subml

https://rlepigre.github.io/subml

Semantics and Implementation of an Extension of ML for Proving Programs

R. Lepigre, PhD manuscript

https://github.com/rlepigre/phd

https://github.com/rlepigre/pml

27 / 27

Thanks!

