
Toward an Adequation Lemma for

pml2

Rodolphe Lepigre - Montevideo - 03/12/2014

Introduction Calculus Types and semantics Typing rules Fixing the Model

Why another proof assistant?

Proof assistants usually come with two languages:

Formulas (e.g. specizcations)

Proof-terms (e.g. pure �-calculus)

An optional proof construction language (e.g. tactics)

Our aim: build a programing language centered system

What about other systems?

Coq: hidden proof-terms (use of tactics)

Agda: proof-terms with a limited syntax (explicited directly)

HOL light, HOL, Isabelle/HOL: no proof-terms

Introduction Calculus Types and semantics Typing rules Fixing the Model

1/29

The ingredients

Programming side:

Full-featured ML-like language

Evaluation strategy: call-by-value

Curry-style language (no types in terms)

Proofs are programs

Logic side:

Higher-order types

Classical logic

Program values are the individuals of the logic

Contain the equational theory of the programming language

Introduction Calculus Types and semantics Typing rules Fixing the Model

2/29

Example using the equational theory

type rec nat = [Z[] | S[nat]]

val rec (+) : nat => nat => nat =
fun m n -> match n with

| Z[] -> m
| S[n'] -> S[m + n']

val rec assoc : l:nat => m:nat => n:nat => (l+m)+n == l+(m+n) =
fun l m n -> match n with

| Z[] -> show (l+m)+Z[] == l+(m+Z[]);
show l+m == l+m;
8<

| S[n'] -> show (l+m)+S[n'] == l+(m+S[n']);
show S[(l+m)+n'] == l+S[m+n'];
show S[(l+m)+n'] == S[l+(m+n')];
show (l+m)+n' == l+(m+n');
use (assoc l m n'); 8<

Every {show ... == ...;| is only added for clarity

Introduction Calculus Types and semantics Typing rules Fixing the Model

3/29

Values and terms

Call-by-value �-calculus has two syntactic entities:

Remarks:

Values are terms

In call-by-name values and terms are collapsed

Why do we want a call-by-value language?

Quantizers are more symmetric

Works well in practice (OCaml)

Simon Peyton Jones regrets not using call-by-value for Haskell

Calculus

w

Introduction Types and semantics Typing rules Fixing the Model

,v � tx�|x

u,t � ut|v

4/29

Going ML-like

We add case analysis, records and a zxpoint operator:

We enforce values in many places to simplify the calculus

We can dezne syntactic sugars:

� � � �� �� �C t � �xC x t t . l � �x x . l t

Calculus

w

Introduction Types and semantics Typing rules Fixing the Model

,v � ��;vi=l i��|�v�C|�

u,t � ��;t i��x�Ci��fovesac|l.v|�v,t�Y|�

5/29

Let's make the calculus classical

One possibility is to add a � binder (�� -calculus):

Stacks can be manipulated as zrst-class objects

Remarks:

A stack can be seen as an evaluation context

Intuition: it stores function arguments

��In call-by-value we need stack-frames (t �)

Calculus

u

Introduction Types and semantics Typing rules Fixing the Model

,t � ��t|t��|�

�,� � ��t�|�	v|�

6/29

Summary of the syntax: Values, Terms, Stacks and Processes

A process forms the internal state of a Krivine Machine

It can be thought of as a term in its environment

Calculus

w

Introduction Types and semantics Typing rules Fixing the Model

,v � ��;vi=l i��|�v�C|tx�|x �
 v�

u,t � ���fovesac|l.v|�v,t�Y|p|t��|ut|v �
�

�,� � ��t�|�	v|� ���

s,p � ��t ���
�

7/29

Operational semantics - reduction relation

Call-by-value �-reduction:

Capturing and restoring the evaluation context:

There are also rules for projection, case analysis and the zxpoint operator

Calculus

�

�

Introduction Types and semantics Typing rules Fixing the Model

�

�

�

�

u

t

t

�

�

��

�

�

��

�

t

�

�

�

�

�

u

�

�

�

�

t

t�

�

�

�

v

p

�

�

�

p

	v�t

�	v��tx�� � ���vx�t

8/29

Equivalence relation

Given a process p we write:

p	 if �v , �� , p � v ���
p
 otherwise

Intuitively p	 means that the evaluation of p is successful

We write t � u if �� , t ��	 � u ��	

� is an equivalence relation over terms

CalculusIntroduction Types and semantics Typing rules Fixing the Model

9/29

Type system

We start from System F:

We extend it to an ML-like system:

Types and semantics

B

B

Introduction Calculus Typing rules Fixing the Model

,

,

A

A

�

�

X

�

|

|

B

�

�

�

A

;�A

|

i�

A

C

X

i

�

��

|

|

AX

�

�

�;Ai:l i��
| AXn�

10/29

Allowing formulas to talk about terms

We add four type constructors:

t � A meaning {t is a term of type A|

A � t � u meaning {A and t � u|

�x A and �x A quantifying over values

We also add n-ary predicates over terms:

The variables of System F can be seen as predicates of arity 0

Types and semantics

B

Introduction Calculus Typing rules Fixing the Model

,A � �

| �tn,�,t1�Xn

| AXn�

| AXn�

11/29

Full second-order type system

It is possible to extend this type system to higher-order

Types and semantics

B

Introduction Calculus Typing rules Fixing the Model

,A � �tn,�,t1�Xn

| B�A

| AXn�|AXn�

| ��;�Ai�Ci��
| ��;Ai:l i��
| AXn�

| Ax�|Ax�

| A�t

| u�t�A

12/29

Semantics

We interpret terms and values as their equivalence classes

� � � �v = w �
 | v � wv

� � � �t = u �
 | t � u

Raw semantics of formulas:
��� � � � � ���� �A � B = �x t | � v � A , t x v � B

� � � ����X A = A X P�n n nPn

� � � ����x A = A x v�v�
 v

� � � �� �t � A = v � A | v � t

� � � �A � t � u = A if t � u and � otherwise

...

� �The set A is closed under � for all A (by construction)

Types and semanticsIntroduction Calculus Typing rules Fixing the Model

13/29

Pole, Falsity Values and Truth Values

We dezne a family of poles :� �V ,�i i i �I

� � = p | � i � I , � v � V , � w � v , p � w���� � i iV ,�i i i �I

Properties of a pole :
-1� �They are closed under �

� �And closed under �
If v �� � and v � w then w�� �

For every formula A we dezne:

Types and semantics

�

Introduction Calculus Typing rules Fixing the Model

A� � = ����v,�A��v�|����

�A� �� = ����t,�A� ����|
�t�

14/29

Typing judgements and Adequation Lemma

We have two forms of typing judgements (collapsed in call-by-name):

� � v : A � � t : A

A context � contain:

Type assignments of the form x : A
�Type assignments of the form � : A

Equivalences / inequivalences of the form t � u / t � u

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

Theorem 1.
��� � � �� �� � v : A � v � A � � t : A � t � A

15/29

Adding adequate typing rules to the system

We can add any rule provided that it is adequate

Examples of adequate rules:

�, x : A � t : B � � t : A � B � � u : A
Ax � �i e

�, x : A � x : A � � �x t : A � B � � t u : B

� ��, � : A � t : A �, � : A � t : A
� �

�� � �� t : A �, � : A � t �� : B

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

16/29

� �Proof of adequacy of �e

� � � �� �We suppose t � A � B and u � B
��� �� �� �We need to show t u � B

�� � � �� �We take � � B and show t u �� �
� ���It is enough to show u � t � �

�� ����It is enough to show t � � B

� � ���We take v � B and show v � t � �
�It is enough to show t � v . � �

�� �It is enough to show v . � � A � B

� �We take �xm � A � B and show �xm � v . � �
��It is enough to show m x v �� �

��� ���It is enough to show m x v � B

� �This is true by deznition of A � B

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

17/29

Rules of System F

� � v : A � � t : �X An� �i e

� � v : �X A ��� � t : A X Pn n

� �� �� � t : A X P �, x : A X P � t : Bn n n n� �i e

� � t : �X A �, x : �X A � t : Bn n

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

18/29

Records and case analysis

� �� � v : � l : A ; � � � � v : A �i i i i× ×e i

� � v . l : A � � � �� � � l = v ; � : � l : A ; �i i i i i i

� � v : Ai +i� � �� � �� � C v : � C A ; �i i i

� � �� � �� � v : � C A ; � � �, x : A , C x � v � t : B �i i i i i +e� �� �� � case v of � C x � t ; � : Bi i

Remark: equivalence in the premise of +e

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

19/29

Quantizcation over individuals

� � v : A � � t : �x A
� �i e

� � v : �x A ��� � t : A x v

� �� �� � t : A x v �, x : A y v � t : B
� �i e

� � t : �x A �, x : �y A � t : B

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

20/29

Belonging and Restriction

� � v : A � � t � v �, x : A , x � u � t : B
� �i

� � v : t � A �, x : u � A � t : B

� ��, x : A , u � u � t : C �E �, u � u �, u � u � t : A1 2 1 2 1 2� �
l r� � t : A � u � u�, x : A � u � u � t : C 1 21 2

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

21/29

Dependent product

The usual dependent product �x : AB can be encoded:

� ��x : AB � �x x � A � B

For instance the elimination rule

� � t : � B � � v : Ax : A �e��� � t v : B x v
can be derived:

� �� � t : �x x � A � B � � v � A
� �e i��� � t : v � A � B x v � � v : v � A

�e� � ��� � t v : B x v

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

22/29

Value restriction

In call-by-value with classical logic we need value restriction:

� � t : � B � � v : Ax : A �e��� � t v : B x v

The following rule is not valid:

� � t : � B � � u : Ax : A �e��� � t u : B x u

We would like to have at least:

�, y � u � t : � B �, y � u � u : Ax : A �e���, y � u � t u : B x u

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

23/29

Derivation of �e

Provided that we have:

���, t � t � u : A t �, t � t � t : A1 2 1 1 2 1� �r l

�, t � t � t : A���, t � t � u : A t 1 2 21 2 2

We can derive the rule � on t using x � t :e

�2

�1 �, y � u � u : A
�l

�, y � u � t : � B �, y � u � y : A vx : A �e���, y � u � t y : B x y
�l

���, y � u � t u : B x y
�r

���, y � u � t u : B x u

Typing rulesIntroduction Calculus Types and semantics Fixing the Model

24/29

Required property of the model

We need � to be extensional:

� �� �v � w � � x v � � x w

� �� �t � u � � t � � u

We also need:

Remarks:
�� ! "
 is trivialv

�� # "
 is not true in general...v

Fixing the ModelIntroduction Calculus Types and semantics Typing rules

Theorem 2.
��� �If !
 is closed under � then = "
v v

��� � � �Direct consequence: v � A � v � A

25/29

Main idea (sufzcient condition)

We add a new term (or instruction) to the syntax:

� �t , u � � | $ v , w

With the reduction rule:

� �$ v , w �� � v �� if v � w

� �In the presence of $ v , w we will obtain

�� # "
 v

Fixing the ModelIntroduction Calculus Types and semantics Typing rules

26/29

Proof

Recall the deznitions:

� �� �� �� � = � � � | � v � , v � � � = t �
 | � � � , t � � �

��� �We consider !
 closed under � and show "
 ! v v

��We assume that v % and show that v %
�We need to znd a stack � � such that v�� % .0 0

We need to znd a stack � � � such that:0

�w � , w� � � 0

v � � % 0

� ���� = �x $ x, v � is such a stack0

Fixing the ModelIntroduction Calculus Types and semantics Typing rules

27/29

A stratized model

� � � �Problem: � and � are interdependent...

For all i � � we dezne:

We then take:

� � � � � � � �� = � � = �i&i'
i �� i ��

Fixing the Model

�

Introduction Calculus Types and semantics Typing rules

�0� = ���

�� 1+i� = �w�
i

v|���v,���w,v�$��(��i�

��i� = �	
j

��)u�	
j

��)t,)�,����,i*j�|�u,t��

28/29

Future work

Check the full details of the adequation lemma

Add subtyping

Make sure we have enough rules

Implementation:

Pseudo-algorithm for �

Hash-consing of the AST for efzciency

Type checking

...

Fixing the ModelIntroduction Calculus Types and semantics Typing rules

29/29

Thank you!

www.patoline.org

Introduction Calculus Types and semantics Typing rules Fixing the Model

	
	Introduction
	Calculus
	Types and semantics
	Typing rules
	Fixing the Model

