Toward an Adequation Lemma for PML2

Rodolphe Lepigre - Montevideo - 03/12/2014

Why another proof assistant?

Proof assistants usually come with two languages:

- Formulas (e.g. specifications)
- Proof-terms (e.g. pure λ-calculus)
- An optional proof construction language (e.g. tactics)

Our aim: build a programing language centered system

What about other systems?

- Coq: hidden proof-terms (use of tactics)
- Agda: proof-terms with a limited syntax (explicited directly)
- HOL light, HOL, Isabelle/HOL: no proof-terms

The ingredients

Programming side:

- Full-featured ML-like language
- Evaluation strategy: call-by-value
- Curry-style language (no types in terms)
- Proofs are programs

Logic side:

- Higher-order types
- Classical logic
- Program values are the individuals of the logic
- Contain the equational theory of the programming language

Example using the equational theory

```
type rec nat = [ Z[] | S[nat] ]
val rec (+) : nat => nat => nat =
    fun m n -> match n with
        Z[] -> m
        | S[n'] -> S[m + n']
val rec assoc : l:nat => m:nat => n:nat => (l+m)+n == l+(m+n) =
    fun l m n -> match n with
                        | Z[] -> show (l+m)+Z[] == l+(m+Z[]);
                        show l+m == l+m;
                                8<
    | S[n'] -> show (l+m)+S[n'] == l+(m+S[n']);
    show S[(l+m)+n'] == l+S[m+n'];
    show S[(l+m)+n'] == S[l+(m+n')];
    show (l+m)+n' == l+(m+n');
    use (assoc l m n'); 8<
```

Every "show ... == . . . ;" is only added for clarity

Values and terms

Call-by-value λ-calculus has two syntactic entities:

$$
\begin{aligned}
& v, w::=x \mid \lambda x t \\
& t, u::=v \mid t u
\end{aligned}
$$

Remarks:

- Values are terms
- In call-by-name values and terms are collapsed

Why do we want a call-by-value language?

- Quantifiers are more symmetric
- Works well in practice (OCaml)
- Simon Peyton Jones regrets not using call-by-value for Haskell

Going ML-like

We add case analysis, records and a fixpoint operator:

$$
\begin{aligned}
v, w & ::=\cdots|\mathrm{C}[v]|\left\{\cdots l_{i}=v_{i} ; \cdots\right\} \\
\mathrm{t}, \mathrm{u}:: & =\cdots|\mathrm{Y}(\mathrm{t}, v)| v . \mathrm{l} \mid \text { case } v \text { of }\left[\cdots \mathrm{C}_{\mathrm{i}}[\mathrm{x}] \rightarrow \mathrm{t}_{\mathrm{i}} ; \cdots\right]
\end{aligned}
$$

We enforce values in many places to simplify the calculus

We can define syntactic sugars:

$$
C[t]:=(\lambda x C[x]) t \quad t . l::=(\lambda x x . l) t
$$

Let's make the calculus classical

One possibility is to add a μ binder ($\lambda \mu$-calculus):

$$
\begin{aligned}
& \mathrm{t}, \mathrm{u}:=\cdots|\mu \alpha \mathrm{t}| \mathrm{t} * \pi \\
& \pi, \rho::=\alpha|v \cdot \pi|[\mathrm{t}] \pi
\end{aligned}
$$

Stacks can be manipulated as first-class objects

Remarks:

- A stack can be seen as an evaluation context
- Intuition: it stores function arguments
- In call-by-value we need stack-frames ([t] π)

Summary of the syntax: Values, Terms, Stacks and Processes

$$
\begin{align*}
& v, w::=x|\lambda x t| C[v] \mid\left\{\cdots l_{i}=v_{i} ; \cdots\right\} \tag{v}\\
& t, u:=v|\mathrm{tu}| \mu \alpha \mathrm{t}|\mathrm{p}| \mathrm{Y}(\mathrm{t}, v)|v . l| \text { case } v \text { of }[\cdots] \\
& \pi, \rho::=\alpha|v \cdot \pi|[\mathrm{t}] \pi \tag{П}\\
& \mathrm{p}, \mathrm{~s}::=\mathrm{t} * \pi
\end{align*}
$$

A process forms the internal state of a Krivine Machine

It can be thought of as a term in its environment

Operational semantics - reduction relation

Call-by-value β-reduction:

$$
\begin{aligned}
(\mathrm{tu}) * \pi & \rightarrow \mathrm{u} *[\mathrm{t}] \pi \\
v *[\mathrm{t}] \pi & \rightarrow \mathrm{t} * v \cdot \pi \\
(\lambda x \mathrm{t}) * v \cdot \pi & \rightarrow \mathrm{t}[x \leftarrow v] * \pi
\end{aligned}
$$

Capturing and restoring the evaluation context:

$$
\begin{aligned}
(\mu \alpha \mathrm{t}) * \pi & \rightarrow \mathrm{t}[\alpha \leftarrow \pi] * \pi \\
\mathrm{p} * \pi & \rightarrow \mathrm{p}
\end{aligned}
$$

There are also rules for projection, case analysis and the fixpoint operator

Equivalence relation

Given a process p we write:

- $\mathrm{p} \Downarrow$ if $\exists v, \exists \alpha, \mathrm{p} \rightarrow \rightarrow^{*} v * \alpha$
- $\mathrm{p} \Uparrow$ otherwise

Intuitively $p \Downarrow$ means that the evaluation of p is successful

We write $\mathrm{t} \equiv \mathrm{u}$ if $\forall \pi, \mathrm{t} * \pi \Downarrow \Leftrightarrow \mathrm{u} * \pi \Downarrow$
\equiv is an equivalence relation over terms

Type system

We start from System F:

$$
\begin{aligned}
A, B \quad:= & X \\
& \mid \\
& A \Rightarrow B \\
& \forall X A \\
& \mid \exists X A
\end{aligned}
$$

We extend it to an ML-like system:

$$
\begin{aligned}
A, B: & =\cdots \\
& \mid \\
& {\left[\cdots C_{i}\left[A_{i}\right] ; \cdots\right] } \\
& \mid \\
& \left\{\cdots l_{i}: A_{i} ; \cdots\right\} \\
& \mid \mu X_{n} A
\end{aligned}
$$

Allowing formulas to talk about terms

We add four type constructors:

- $t \in A$ meaning " t is a term of type A "
$-A \upharpoonright t \equiv u$ meaning " A and $t \equiv u$ "
- $\forall x A$ and $\exists x A$ quantifying over values

We also add n-ary predicates over terms:

$$
\begin{aligned}
A, B: & \cdots \\
& =X_{n}\left(t_{1}, \cdots, t_{n}\right) \\
\mid & \forall X_{n} A \\
\mid & \exists X_{n} A
\end{aligned}
$$

The variables of System F can be seen as predicates of arity 0

Full second-order type system

$$
\begin{aligned}
A, B \quad:= & X_{n}\left(t_{1}, \cdots, t_{n}\right) \\
\mid & A \Rightarrow B \\
\mid & \forall X_{n} A \quad \exists X_{n} A \\
\mid & {\left[\cdots C_{i}\left[A_{i}\right] ; \cdots\right] } \\
\mid & \left\{\cdots l_{i}: A_{i} ; \cdots\right\} \\
\mid & \mu X_{n} A \\
\mid & \forall x A \quad \exists x A \\
\mid & t \in A \\
\mid & A \upharpoonright t \equiv u
\end{aligned}
$$

It is possible to extend this type system to higher-order

Semantics

We interpret terms and values as their equivalence classes
$-\llbracket v \rrbracket=\left\{w \in \Lambda_{v} \mid v \equiv w\right\}$
$-\llbracket t \rrbracket=\{u \in \Lambda \mid t \equiv u\}$

Raw semantics of formulas:

- $\llbracket A \Rightarrow B \rrbracket=\left\{\lambda x t \mid \forall v \in \llbracket A \rrbracket, \mathrm{t}[x \leftarrow v] \in \llbracket \mathrm{B} \rrbracket^{\perp \perp}\right\}$
- $\llbracket \forall X_{n} A \rrbracket=\cap_{P_{n}} \llbracket A\left[X_{n} \leftarrow P_{n}\right] \rrbracket$
- $\llbracket \forall x A \rrbracket=\cap_{v \in \Lambda_{v}} \llbracket A[x \leftarrow v] \rrbracket$
$-\llbracket t \in A \rrbracket=\{v \in \llbracket A \rrbracket \mid v \equiv \mathrm{t}\}$
$-\llbracket A \upharpoonright t \equiv u \rrbracket=\llbracket A \rrbracket$ if $t \equiv u$ and \varnothing otherwise
- ...

The set $\llbracket A \rrbracket$ is closed under \equiv for all A (by construction)

Pole, Falsity Values and Truth Values

We define a family of poles $\Perp_{\left(V_{i}, \alpha_{i}\right)_{i \in i}}$:

$$
\Perp_{\left(V_{i}, \alpha_{i}\right)_{i \in \mathrm{I}}}=\left\{p \mid \exists i \in \mathrm{I}, \exists v \in V_{i}, \exists w \equiv v, p \rightarrow^{*} w * \alpha_{i}\right\}
$$

Properties of a pole \Perp :

- They are closed under $(\rightarrow)^{-1}$
- And closed under (\rightarrow)
- If $v * \alpha \in \Perp$ and $v \equiv w$ then $w * \alpha \in \Perp$

For every formula A we define:

$$
\begin{aligned}
\llbracket A \rrbracket^{\perp} & =\{\pi \in \Pi \mid \forall v \in \llbracket A \rrbracket, v * \pi \in \Perp\} \\
\llbracket A \rrbracket^{\perp \perp} & =\left\{t \in \Lambda \mid \forall \pi \in \llbracket A \rrbracket^{\perp}, t * \pi \in \Perp\right\}
\end{aligned}
$$

Typing judgements and Adequation Lemma

We have two forms of typing judgements (collapsed in call-by-name):

$$
\Gamma \vdash v: A \quad \Gamma \vdash t: A
$$

A context Γ contain:

- Type assignments of the form $x: A$
- Type assignments of the form $\alpha: A^{\perp}$
- Equivalences / inequivalences of the form $t \equiv u / t \not \equiv u$

Theorem 1.

$$
\Gamma \vdash v: A \Rightarrow v^{\prime} \in \llbracket A \rrbracket \quad \Gamma \vdash t: A \Rightarrow t^{\prime} \in \llbracket A \rrbracket^{\perp \perp}
$$

Adding adequate typing rules to the system

We can add any rule provided that it is adequate

Examples of adequate rules:

$$
\begin{array}{cc}
\frac{\Gamma, x: A \vdash x: A}{A x} \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x t: A \Rightarrow B} & \frac{\Gamma \vdash t: A \Rightarrow B}{\Gamma \vdash t u: B} \\
\frac{\Gamma, \alpha: A^{\perp} \vdash t: A}{\Gamma \vdash \mu \alpha t: A} \mu & \frac{\Gamma, \alpha: A^{\perp} \vdash t: A}{\Gamma, \alpha: A^{\perp} \vdash t * \alpha: B}
\end{array}
$$

Proof of adequacy of $\left(\Rightarrow_{e}\right)$

We suppose $\mathrm{t}^{\prime} \in \llbracket A \Rightarrow B \rrbracket$ and $u^{\prime} \in \llbracket B \rrbracket$
We need to show $\left(t^{\prime} u^{\prime}\right) \in \llbracket B \rrbracket^{\perp \perp}$
We take $\pi \in \llbracket \mathrm{B} \rrbracket^{\perp}$ and show $\left(\mathrm{t}^{\prime} \mathbf{u}^{\prime}\right) * \pi \in \Perp$
It is enough to show $u^{\prime} *\left[\mathrm{t}^{\prime}\right] \pi \in \Perp$
It is enough to show $\left[\mathrm{t}^{\prime}\right] \pi \in \llbracket \mathrm{B} \rrbracket^{\perp}$
We take $v \in \llbracket \mathrm{~B} \rrbracket$ and show $v *\left[\mathrm{t}^{\prime}\right] \pi \in \Perp$
It is enough to show $t^{\prime} * v . \pi \in \Perp$
It is enough to show $v . \pi \in \llbracket A \Rightarrow B \rrbracket^{\perp}$
We take $\lambda \times m \in \llbracket A \Rightarrow B \rrbracket$ and show $\lambda x m * \nu . \pi \in \Perp$
It is enough to show $\mathfrak{m}[x \leftarrow v] * \pi \in \Perp$
It is enough to show $\mathfrak{m}[x \leftarrow v] \in \llbracket B \rrbracket^{\perp \perp}$
This is true by definition of $\llbracket A \Rightarrow B \rrbracket$

Rules of System F

$$
\begin{aligned}
& \frac{\Gamma \vdash v: A}{\Gamma \vdash v: \forall X A}{ }^{\gamma_{i}} \\
& \frac{\Gamma \vdash t: \forall X_{n} A}{\Gamma \vdash t: A\left[X_{n} \leftarrow P_{n}\right]}{ }^{\theta_{e}} \\
& \frac{\Gamma \vdash \mathrm{t}: A\left[X_{n} \leftarrow P_{n}\right]}{\Gamma \vdash \mathrm{t}: \exists X_{\mathrm{n}} A}{ }_{\mathrm{i}} \\
& \frac{\Gamma, x: A\left[X_{n} \leftarrow P_{n}\right] \vdash t: B}{\Gamma, x: \exists X_{n} A \vdash t: B} \exists_{e}
\end{aligned}
$$

Records and case analysis

$$
\begin{gathered}
\frac{\Gamma \vdash v:\left\{\cdots l_{i}: A_{i} ; \cdots\right\}}{\Gamma \vdash v \cdot l_{i}: A_{i}} \\
\frac{\cdots \vdash v_{e}}{\Gamma \vdash\left\{\cdots l_{i}=v_{i} ; \cdots\right\}:\left\{\cdots \lambda_{i}: A_{i} ; \cdots\right\}} \\
\frac{\Gamma \vdash v: A_{i}}{x_{i}} \\
\left.\frac{\Gamma \vdash v:\left[\cdots C_{i}[v]:\left[\cdots C_{i}\left[A_{i}\right] ; \cdots\right]\right.}{+_{i}}\left[A_{i}\right] ; \cdots\right] \quad \cdots \quad, x: A_{i}, C_{i}[x] \equiv v \vdash t_{i}: B \quad \cdots \\
\Gamma \vdash \operatorname{casev} v\left[\cdots C_{i}[x] \rightarrow t_{i} ; \cdots\right]: B
\end{gathered}
$$

Remark: equivalence in the premise of $+_{e}$

Quantification over individuals

$$
\begin{array}{cc}
\frac{\Gamma \vdash v: A}{\Gamma \vdash v: \forall x A} \\
\forall_{i} & \frac{\Gamma \vdash t: \forall x A}{\Gamma \vdash t: A[x \leftarrow v]}{ }_{\forall_{e}}^{\Gamma \vdash t: \exists x A} \\
\exists_{i} & \frac{\Gamma, x: A[y \leftarrow v] \vdash t: B}{\Gamma, x: \exists y A \vdash t: B} \exists_{e}
\end{array}
$$

Belonging and Restriction

$$
\begin{aligned}
& \frac{\Gamma \vdash v: A \quad \Gamma \vdash \mathrm{t} \equiv v}{\Gamma \vdash v: \mathrm{t} \in A} \epsilon_{\mathrm{i}} \\
& \frac{\Gamma, x: A, x \equiv u \vdash t: B}{\Gamma, x: u \in A \vdash t: B} \\
& \frac{\Gamma, x: A, u_{1} \equiv u_{2} \vdash t: C}{\Gamma, x: A \upharpoonright u_{1} \equiv u_{2} \vdash t: C} \quad \frac{\vdash \mathcal{E}\left(\Gamma, u_{1} \not \equiv u_{2}\right) \quad \Gamma, u_{1} \equiv u_{2} \vdash t: A}{\Gamma \vdash t: A \upharpoonright u_{1} \equiv u_{2}} r_{r}
\end{aligned}
$$

Dependent product

The usual dependent product $\Pi x: A B$ can be encoded:

$$
\Pi x: A B \quad:=\quad \forall x(x \in A \Rightarrow B)
$$

For instance the elimination rule
can be derived:

$$
\frac{\Gamma \vdash t: \Pi_{x: A} \mathrm{~B} \quad \Gamma \vdash v: A}{\Gamma \vdash \mathrm{t} v: \mathrm{B}[\mathrm{x} \leftarrow v]} \Pi_{\mathrm{e}}
$$

$$
\frac{\frac{\Gamma \vdash \mathrm{t}: \forall \mathrm{x}(\mathrm{x} \in \mathrm{~A} \Rightarrow \mathrm{~B})}{\Gamma \vdash \mathrm{t}: v \in A \Rightarrow \mathrm{~B}[\mathrm{x} \leftarrow v]} \forall_{\mathrm{e}} \quad \frac{\Gamma \vdash v \in A}{\Gamma \vdash v: v \in A} \epsilon_{\mathrm{i}}}{\Gamma \vdash(\mathrm{t} v): \mathrm{B}[\mathrm{x} \leftarrow v]} \Rightarrow_{\mathrm{e}}
$$

Value restriction

In call-by-value with classical logic we need value restriction:

$$
\frac{\Gamma \vdash \mathrm{t}: \Pi_{\mathrm{x}: \mathrm{A}} \mathrm{~B} \quad \Gamma \vdash v: \mathrm{A}}{\Gamma \vdash \mathrm{t} v: \mathrm{B}[\mathrm{x} \leftarrow v]}
$$

The following rule is not valid:

$$
\frac{\Gamma \vdash \mathrm{t}: \Pi_{\mathrm{x}: \mathrm{A}} \mathrm{~B} \quad \Gamma \vdash \mathrm{u}: \mathrm{A}}{\Gamma \vdash \mathrm{u}: \mathrm{B}[\mathrm{x} \leftarrow \mathrm{u}]}
$$

We would like to have at least:

$$
\frac{\Gamma, y \equiv u \vdash t: \Pi_{x: A} B \quad \Gamma, y \equiv u \vdash u: A}{\Gamma, y \equiv u \vdash t u: B[x \leftarrow u]}
$$

Derivation of Π_{e}

Provided that we have:

$$
\frac{\Gamma, \mathrm{t}_{1} \equiv \mathrm{t}_{2} \vdash \mathrm{u}: A\left[\mathrm{t}_{1}\right]}{\Gamma, \mathrm{t}_{1} \equiv \mathrm{t}_{2} \vdash \mathrm{u}: A\left[\mathrm{t}_{2}\right]} \equiv_{\mathrm{r}} \quad \frac{\Gamma, \mathrm{t}_{1} \equiv \mathrm{t}_{2} \vdash \mathrm{t}_{1}: A}{\Gamma, \mathrm{t}_{1} \equiv \mathrm{t}_{2} \vdash \mathrm{t}_{2}: A} \equiv_{\mathrm{l}}
$$

We can derive the rule Π_{e} on t using $x \equiv t$:

Required property of the model

We need \equiv to be extensional:
$-v \equiv w \Rightarrow \mathrm{E}[x \leftarrow v] \equiv \mathrm{E}[x \leftarrow w]$
$-\mathrm{t} \equiv \mathrm{u} \Rightarrow \mathrm{E}[\mathrm{t}] \equiv \mathrm{E}[\mathrm{u}]$

We also need:

Theorem 2.

If $\Phi \subseteq \Lambda_{v}$ is closed under (\equiv) then $\Phi=\Phi^{\perp \perp} \cap \Lambda_{v}$ Direct consequence: $v \in \llbracket A \rrbracket^{\perp \perp} \Rightarrow v \in \llbracket A \rrbracket$

Remarks:

- $\Phi \subseteq \Phi^{\perp \perp} \cap \Lambda_{v}$ is trivial
- $\Phi \supseteq \Phi^{\perp \perp} \cap \Lambda_{v}$ is not true in general...

Main idea (sufficient condition)

We add a new term (or instruction) to the syntax:

$$
\mathrm{t}, \mathrm{u}::=\cdots \mid \delta(v, w)
$$

With the reduction rule:

$$
\delta(v, w) * \pi \rightarrow v * \pi \quad \text { if } \quad v \not \equiv w
$$

In the presence of $\delta(v, w)$ we will obtain

$$
\Phi \supseteq \Phi^{\perp \perp} \cap \Lambda_{v}
$$

Proof

Recall the definitions:

$$
\Phi^{\perp}=\{\pi \in \Pi \mid \forall v \in \Phi, v * \pi \in \Perp\} \quad \Phi^{\perp \perp}=\left\{t \in \Lambda \mid \forall \pi \in \Phi^{\perp}, t * \pi \in \Perp\right\}
$$

We consider $\Phi \subseteq \Lambda_{v}$ closed under (\equiv) and show $\Phi^{\perp \perp} \cap \Lambda_{v} \subseteq \Phi$
We assume that $v \notin \Phi$ and show that $v \notin \Phi^{\perp \perp}$
We need to find a stack $\pi_{0} \in \Phi^{\perp}$ such that $v * \pi_{0} \notin \Perp$.
We need to find a stack $\pi_{0} \in \Pi$ such that:

- $\forall w \in \Phi, w * \pi_{0} \in \Perp$
$-v * \pi_{0} \notin \Perp$
$\pi_{0}=[\lambda \times \delta(x, v)] \alpha$ is such a stack

A stratified model

Problem: (\rightarrow) and (\equiv) are interdependent...

For all $\mathfrak{i} \in \mathbb{N}$ we define:

$$
\begin{aligned}
\left(\rightarrow_{0}\right) & =(>) \\
\left(\rightarrow_{i+1}\right) & =\left(\rightarrow_{i}\right) \cup\left\{(\delta(v, w) * \pi, v * \pi) \mid v \not \equiv_{i} w\right\} \\
\left(\equiv_{i}\right) & =\left\{(\mathrm{t}, \mathrm{u}) \mid \forall j \leqslant \mathfrak{i}, \forall \pi \in \Pi, \forall \sigma, \mathrm{t} \sigma * \pi \Downarrow_{\mathrm{j}} \Leftrightarrow u \sigma * \pi \Downarrow_{j}\right\}
\end{aligned}
$$

We then take:

$$
(\equiv)=\bigcap_{i \in \mathbb{N}}\left(\equiv_{i}\right) \quad(\rightarrow)=\bigcup_{i \in \mathbb{N}}\left(\rightarrow_{i}\right)
$$

Future work

Check the full details of the adequation lemma

Add subtyping

Make sure we have enough rules

Implementation:

- Pseudo-algorithm for \equiv
- Hash-consing of the AST for efficiency
- Type checking
- ...

Thank you!

WWW.PATOLINE.ORG

