A Classical Realisability Model for PML_{2} with Semantical Value Restriction

Inria Saclay 22/02/2017

Rodolphe Lepigre (rodolphe.lepigre@univ-smb.fr)

Programs and Proofs

```
type rec N = [ Z | S of N ]
val rec add : N = N = N =
    fun n m }
    match n with
    | Z }->\mathrm{ m
    S[k] }->\mathrm{ S[add k m]
```

```
type rec N = [ Z | S of N ]
val rec add : N = N = N =
    fun n m }
    match n with
    | Z }->\mathrm{ m
    S[k] }->\mathrm{ S[add k m]
```

val addZN : $\forall \mathrm{n}(\operatorname{add} \mathrm{Z} \mathrm{n} \equiv \mathrm{n})=\{ \}$

```
type rec N = [ Z | S of N ]
val rec add : N }=>N=>N
    fun n m }
        match n with
        | Z 
        S[k] }->\mathrm{ S[add k m]
```

val addZN : $\forall \mathrm{n}(\operatorname{add} \mathrm{Z} \mathrm{n} \equiv \mathrm{n})=\{ \}$
// val addNZ : $\forall \mathrm{n}$ (add $\mathrm{n} \mathrm{Z} \equiv \mathrm{n}$) = ...
// Cannot be proved.

Proofs and Typed Quantification

Proofs and Typed Quantification

```
val rec addNZ : (n:N) = (add n Z \equiv n) =
    fun n }
    match n with
    Z }->\mathrm{ {}
    S[k] -> addNZ k; {}
```


Proofs and Typed Quantification

```
val rec addNZ : (n:N) => (add n Z \equiv n) =
    fun n }
        match n with
        | Z }->\mathrm{ {}
    | S[k] -> addNZ k; {}
val rec addNSM : (n:N) => (m:N) => (add n S[m] \equiv S[add n m]) =
    fun n m }
    match n with
    | Z }->\mathrm{ {}
    | S[k] }->\mathrm{ addNSM k m; {}
```


Mixing Proofs and Programs

Mixing Proofs and Programs

val rec addComm : $(\mathrm{n}: \mathrm{N}) \Rightarrow(\mathrm{m}: \mathrm{N}) \Rightarrow(\operatorname{add} \mathrm{n} m \equiv \operatorname{add} \mathrm{~m} \mathrm{n})=$ fun $\mathrm{n} \mathrm{m} \rightarrow$ match n with $\mid \mathrm{Z} \rightarrow \operatorname{addNZ} \mathrm{m}$; \{\} | S[k] \rightarrow addComm k m; addNSM m; \{\}

Mixing Proofs and Programs

```
val rec addComm : ( }\textrm{n}:\textrm{N})=>(m:N)=>(add n m \equiv add m n) =
    fun n m }
        match n with
        | Z }->\mathrm{ addNZ m; {}
        | S[k] -> addComm k m; addNSM m; {}
val add : (n:N) => (m:N) = N | (add n m \equiv add m n) =
    fun n m }
        addComm n m; add n m
```


Mixing Proofs and Programs

```
val rec addComm : (n:N) => (m:N) => (add n m \equiv add m n) =
    fun n m }
        match n with
        | Z }->\mathrm{ addNZ m; {}
        | S[k] -> addComm k m; addNSM m; {}
val add : (n:N) = (m:N) = N | (add n m \equiv add m n) =
    fun n m }
        addComm n m; add n m
val add' : N = N = N = add
```


Call-by-value Krivine Machine

$$
\begin{aligned}
& v, w::=x|\lambda x . t|\left\{\left(l_{i}=v_{i}\right)_{i \in I}\right\}\left|C_{k}[v]\right| \square \\
& \mathrm{t}, \mathrm{u}::=\mathrm{a}|v| \mathrm{t} u|\mu \alpha . \mathrm{t}|[\pi] \mathrm{t}\left|v . l_{k}\right|\left[v \mid\left(\mathrm{C}_{\mathrm{i}}\left[\mathrm{x}_{\mathrm{i}}\right] \rightarrow \mathrm{t}_{\mathrm{i}}\right)_{i \in \mathrm{I}}\right]\left|F_{v, t}\right| R_{v, t} \mid \delta_{v, w} \\
& \pi, \rho::=\alpha|\varepsilon| v . \pi \mid[\mathrm{t}] \pi \\
& \mathrm{p}, \mathrm{q}::=\mathrm{t} * \pi
\end{aligned}
$$

Evaluation in the Machine (1/2)

$$
\begin{aligned}
\mathrm{t} u * \pi & >\mathrm{u} *[\mathrm{t}] \pi \\
v *[\mathrm{t}] \pi & >\mathrm{t} * v \cdot \pi \\
\lambda x . \mathrm{t} * v . \pi & >\mathrm{t}[\mathrm{x}:=v] * \pi \\
\mu \alpha . \mathrm{t} * \pi & >\mathrm{t}[\alpha:=\pi] * \pi \\
{[\pi] \mathrm{t} * \xi } & >\mathrm{t} * \pi \\
\left\{\left(l_{i}=v_{\mathrm{i}}\right)_{i \in \mathrm{I}}\right\} \cdot l_{\mathrm{k}} * \pi & >v_{\mathrm{k}} * \pi \\
{\left[\mathrm{C}_{\mathrm{k}}[v] \mid\left(\mathrm{C}_{\mathrm{i}}\left[\mathrm{x}_{\mathrm{i}}\right] \rightarrow \mathrm{t}_{\mathrm{i}}\right)_{i \in \mathrm{I}}\right] * \pi } & >\mathrm{t}_{\mathrm{k}}\left[\mathrm{x}_{\mathrm{k}}:=v\right] * \pi
\end{aligned} \quad(\mathrm{k} \in \mathrm{I})
$$

Evaluation in the Machine (2/2)

$$
\begin{aligned}
& \square * v . \pi>\square * \pi \\
& \square . l_{i} * \pi>\square * \pi \\
& {\left[\square \mid\left(C_{i}\left[x_{i}\right] \rightarrow \mathrm{t}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}\right] * \pi }>\square * \pi \\
& \mathrm{~F}_{\lambda x . \mathrm{u}, \mathrm{t}} * \pi>\mathrm{t} * \pi \\
& \mathrm{R}_{\left\{\left(\mathrm{l}_{\mathrm{i}}=v_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}\right\}, \mathrm{t}} * \pi>\mathrm{t} * \pi
\end{aligned}
$$

Examples

$$
\text { not } \begin{aligned}
C_{1}[\{ \}] * \varepsilon & =\left(\lambda x .\left[x\left|C_{1}[y] \rightarrow C_{0}[\{ \}]\right| C_{0}[y] \rightarrow C_{1}[\{ \}]\right]\right) C_{1}[\{ \}] * \varepsilon \\
& >C_{1}[\{ \}] *\left[\lambda x .\left[x\left|C_{1}[y] \rightarrow C_{0}[\{ \}]\right| C_{0}[y] \rightarrow C_{1}[\{ \}]\right]\right] \varepsilon \\
& >\lambda x .\left[x\left|C_{1}[y] \rightarrow C_{0}[\{ \}]\right| C_{0}[y] \rightarrow C_{1}[\{ \}]\right] * C_{1}[\{ \}] \cdot \varepsilon \\
& >\left[C_{1}[\{ \}]\left|C_{1}[y] \rightarrow C_{0}[\{ \}]\right| C_{0}[y] \rightarrow C_{1}[\{ \}] * \varepsilon\right. \\
& >C_{0}[\{ \}] * \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
\Omega * \varepsilon & =(\lambda x . x x)(\lambda x . x x) * \varepsilon \\
& >\lambda x . x x *[\lambda x . x x] \varepsilon \\
& >\lambda x . x x * \lambda x . x x . \varepsilon \\
& >(\lambda x . x x)(\lambda x . x x) * \varepsilon \\
& >\cdots
\end{aligned}
$$

It is easy to quantify over evaluation contexts (i.e. stacks).

It is easy to quantify over evaluation contexts (i.e. stacks).

$$
\text { We define } p \Downarrow \text { as } \exists v, p>^{*} v * \varepsilon
$$

It is easy to quantify over evaluation contexts (ie. stacks).

$$
\text { We define } p \Downarrow \text { as } \exists v, p>^{*} v * \varepsilon
$$

$$
(\equiv)=\{(\mathrm{t}, \mathrm{u}) \mid \forall \pi, \forall \rho, \mathrm{t} \rho * \pi \Downarrow \Leftrightarrow \mathrm{u} \rho * \pi \Downarrow\}
$$

It is easy to quantify over evaluation contexts (i.e. stacks).

$$
\text { We define } \mathrm{p} \Downarrow \text { as } \exists v, \mathrm{p}>^{*} v * \varepsilon
$$

$$
(\equiv)=\{(\mathrm{t}, \mathrm{u}) \mid \forall \pi, \forall \rho, \mathrm{t} \rho * \pi \Downarrow \Leftrightarrow \mathrm{u} \rho * \pi \Downarrow\}
$$

We quantify over substitutions to handle free variables.

Example of Derivable EQuivalences

Example of Derivable EQuivalences

For all $\mathrm{x}, v, \mathrm{t}$ we have $(\lambda x . \mathrm{t}) v \equiv \mathrm{t}[\mathrm{x}:=\nu]$.

Example of Derivable EQuivalences

For all x, v, t we have $(\lambda x . \mathrm{t}) v \equiv \mathrm{t}[\mathrm{x}:=\nu]$.

$$
\begin{aligned}
((\lambda x . t) v) \rho * \pi & =(\lambda x . t \rho) v \rho * \pi \\
& >v \rho *[\lambda x . t \rho] \pi \\
& >\lambda x . t \rho * v \rho \cdot \pi \\
& >t \rho[x:=v \rho] * \pi \\
& =(t[x:=v]) \rho * \pi
\end{aligned}
$$

More EQuivalences: Canonical Values

$$
\begin{aligned}
x \equiv v & \Leftrightarrow \quad v=x \\
\square \equiv v & \Leftrightarrow \quad v=\square \\
C_{k}\left[v_{k}\right] \equiv v & \Leftrightarrow \quad v=C_{k}\left[w_{k}\right] \text { and } v_{k} \equiv w_{k} \\
\left\{\left(l_{i}=v_{i}\right)_{i \in \mathrm{I}}\right\} \equiv v & \Leftrightarrow \quad v=\left\{\left(l_{i}=w_{i}\right)_{i \in \mathrm{I}}\right\} \text { and } \forall \mathfrak{i} \in \mathrm{I}, v_{\mathrm{i}} \equiv w_{i} \\
\lambda x . t \equiv v & \Leftrightarrow \quad v=\lambda y . u \text { and } t \equiv u[y:=x]
\end{aligned}
$$

Value Interpretation of Types

A type A is interpreted as a set of values $\llbracket A \rrbracket$.

$$
\text { We require } \llbracket A \rrbracket \text { to be closed under (} \equiv \text {). }
$$

$$
\text { We require } \square \in \llbracket A \rrbracket \text {. }
$$

We have $\llbracket A \rrbracket \in\left\{\{\square\} \subseteq \Phi \subseteq \Lambda_{\imath} \mid v \in \Phi \wedge w \equiv v \Rightarrow w \in \Phi\right\}$.
(Λ_{ι} is the set of all the values.)

Value Interpretation of Pure Types

$$
\begin{aligned}
\llbracket\left\{\left(l_{i}: A_{i}\right)_{i \in \mathrm{I}}\right\} \rrbracket & =\left\{\left\{\left(l_{i}=v_{i}\right)_{i \in \mathrm{I}}\right\} \mid \forall i \in \mathrm{I}, v_{i} \in \llbracket A_{i} \rrbracket\right\} \cup\{\square\} \\
\llbracket\left[\left(C_{i}: A_{i}\right)_{i \in \mathrm{I}} \rrbracket \rrbracket\right. & =\cup_{i \in \mathrm{I}}\left\{C_{i}[v] \mid v \in \llbracket A_{i} \rrbracket\right\} \cup\{\square\} \\
\llbracket \forall X . A \rrbracket & =\cap_{\Phi} \llbracket A[X:=\Phi] \rrbracket \\
\llbracket \exists X . A \rrbracket & =\cup_{\Phi} \llbracket A[X:=\Phi] \rrbracket \\
\llbracket \forall a . A \rrbracket & =\cap_{t \in \Lambda} \llbracket A[a:=t] \rrbracket \\
\llbracket \exists a . A \rrbracket & =\cup_{t \in \Lambda} \llbracket A[a:=t] \rrbracket
\end{aligned}
$$

Function Type and Terms

Function Type and Terms

$$
\llbracket A \Rightarrow B \rrbracket=\{\lambda x . w \mid \forall v \in \llbracket A \mathbb{A}, w[x:=v] \in \mathbb{I} \mathbb{B}\} \cup\{\square\}
$$

Function Type and Terms

$$
\llbracket A \Rightarrow B \rrbracket=\{\lambda x . w \mid \forall v \in \llbracket A \rrbracket, w[x:=v] \in \llbracket B \rrbracket\} \cup\{\square\}
$$

What about programs that actually compute something?

Function Type and Terms

$$
\llbracket A \Rightarrow B \rrbracket=\{\lambda x . w \mid \forall v \in \llbracket A \rrbracket, w[x:=v] \in \llbracket B \rrbracket\} \cup\{\square\}
$$

What about programs that actually compute something?

We define a completion operation $\llbracket A \rrbracket \mapsto \llbracket A \rrbracket^{\Perp \Perp}$.

Function Type and Terms

$$
\llbracket A \Rightarrow B \rrbracket=\{\lambda x . w \mid \forall v \in \llbracket A \rrbracket, w[x:=v] \in \llbracket B \rrbracket\} \cup\{\square\}
$$

What about programs that actually compute something?

We define a completion operation $\llbracket A \rrbracket \mapsto \llbracket A \rrbracket^{\Perp \Perp}$.

The set $\llbracket A \rrbracket^{\Perp \Perp}$ contains terms "behaving" as values of $\llbracket A \rrbracket$.

Function Type and Terms

$$
\llbracket A \Rightarrow B \rrbracket=\{\lambda x . w \mid \forall v \in \llbracket A \rrbracket, w[x:=v] \in \llbracket B \rrbracket\} \cup\{\square\}
$$

What about programs that actually compute something?

We define a completion operation $\llbracket A \rrbracket \mapsto \llbracket A \rrbracket^{\Perp \Perp}$.

The set $\llbracket A \rrbracket^{\Perp \Perp}$ contains terms "behaving" as values of $\llbracket A \rrbracket$.

We can then take $\llbracket A \Rightarrow B \rrbracket=\left\{\lambda x . t \mid \forall v \in \llbracket A \rrbracket, t[x:=v] \in \llbracket B \rrbracket^{\Perp \Perp}\right\} \cup\{\square\}$

Pole and Orthogonality

Pole and Orthogonality

The definition of $\llbracket A \rrbracket^{\Perp \Perp}$ is parametrised by a set $\Perp \subseteq \Lambda \times \Pi$.

Pole and Orthogonality

The definition of $\llbracket A \rrbracket^{\Perp \Perp}$ is parametrised by a set $\Perp \subseteq \Lambda \times \Pi$.

Intuitively, \Perp is a set of processes that "behave well".

Pole and Orthogonality

The definition of $\llbracket A \rrbracket^{\Perp \Perp}$ is parametrised by a set $\Perp \subseteq \Lambda \times \Pi$.

Intuitively, \Perp is a set of processes that "behave well".

The set $\Perp=\left\{p \in \Lambda \times \Pi \mid \exists v \in \Lambda_{\iota}, p>^{*} v * \varepsilon\right\}$ is a good choice.

Pole and Orthogonality

The definition of $\llbracket A \rrbracket^{\Perp \Perp}$ is parametrised by a set $\Perp \subseteq \Lambda \times \Pi$.

Intuitively, \Perp is a set of processes that "behave well".

The set $\Perp=\left\{p \in \Lambda \times \Pi \mid \exists v \in \Lambda_{\imath}, p>^{*} v * \varepsilon\right\}$ is a good choice.

$$
\begin{aligned}
& \llbracket A \rrbracket \in\left\{\{\square\} \subseteq \Phi \subseteq \Lambda_{\imath} \mid v \in \Phi \wedge v \equiv w \Rightarrow w \in \Phi\right\} \\
& \llbracket A \rrbracket^{\Perp}=\{\pi \in \Pi \mid \forall v \in \llbracket A \rrbracket, v * \pi \in \Perp\} \\
& \llbracket A \rrbracket^{\Perp \Perp}=\left\{t \in \Lambda \mid \forall \pi \in \llbracket A \rrbracket^{\Perp}, t * \pi \in \Perp\right\}
\end{aligned}
$$

Typing judgments and adequacy

TYping JUDGMENTS AND ADEQUACY

There are two forms of judgments: $\Xi \vdash_{\text {val }} v: A$ and $\Xi \vdash t: A$.

There are two forms of judgments: $\Xi \vdash_{\text {val }} v: A$ and $\Xi \vdash t: A$.

The context Ξ contains only equivalences of the form $u_{1} \equiv u_{2}$.

There are two forms of judgments: $\Xi \vdash_{\text {val }} v: A$ and $\Xi \vdash t: A$.

The context Ξ contains only equivalences of the form $u_{1} \equiv u_{2}$.

Everything is closed (choice operator / witness presentation).

There are two forms of judgments: $\Xi \vdash_{\text {val }} v: A$ and $\Xi \vdash t: A$.

The context Ξ contains only equivalences of the form $u_{1} \equiv u_{2}$.

Everything is closed (choice operator / witness presentation).

Adequacy for terms: if $\Xi \vdash t: A$ is derivable and Ξ is valid then $\llbracket t \rrbracket \in \llbracket A \rrbracket^{\Perp}$.

There are two forms of judgments: $\Xi \vdash_{\text {val }} v: A$ and $\Xi \vdash t: A$.

The context Ξ contains only equivalences of the form $u_{1} \equiv u_{2}$.

Everything is closed (choice operator / witness presentation).

Adequacy for terms: if $\Xi \vdash t: A$ is derivable and Ξ is valid then $\llbracket t \rrbracket \in \llbracket A \rrbracket^{\Perp}$.

Adequacy for values: if $\Xi \vdash_{\text {val }} v: A$ is derivable and Ξ is valid then $\llbracket v \rrbracket \in \llbracket A \rrbracket$.

There are two forms of judgments: $\Xi \vdash_{\text {val }} v: A$ and $\Xi \vdash t: A$.

The context Ξ contains only equivalences of the form $u_{1} \equiv u_{2}$.

Everything is closed (choice operator / witness presentation).

Adequacy for terms: if $\Xi \vdash t: \mathcal{A}$ is derivable and Ξ is valid then $\llbracket t \rrbracket \in \llbracket A \rrbracket^{\Perp}$.

Adequacy for values: if $\Xi \vdash_{\text {val }} v: A$ is derivable and Ξ is valid then $\llbracket v \rrbracket \in \llbracket A \rrbracket$.

$$
\text { Since } \llbracket A \rrbracket \subseteq \llbracket A \rrbracket^{\Perp \Perp} \text { we have the rule } \frac{\Xi \vdash_{\text {val }} v: A}{\Xi \vdash v: A} \uparrow \text {. }
$$

Rather Usual Typing Rules

Rather Usual Typing Rules

$$
\begin{gathered}
\frac{\Xi \vdash \mathrm{t}\left[\mathrm{x}:=\varepsilon_{x \in A}(\mathrm{t} \notin \mathrm{~B})\right]: \mathrm{B}}{\Xi \vdash_{\text {val }} \lambda x . \mathrm{t}: \mathrm{A} \Rightarrow \mathrm{~B}} \Rightarrow_{i} \quad \frac{\Xi \vdash \mathrm{t}: \mathrm{A} \Rightarrow \mathrm{~B} \quad \Xi \vdash \mathrm{u}: \mathrm{A}}{\Xi \vdash \mathrm{tu}: \mathrm{B}} \Rightarrow_{\mathrm{e}} \\
\overline{\Xi \vdash_{\text {val }} \varepsilon_{x \in A}(\mathrm{t} \notin \mathrm{~B}): A}
\end{gathered}
$$

Rather Usual Typing Rules

$$
\begin{gathered}
\frac{\Xi \vdash \mathrm{t}\left[x:=\varepsilon_{\mathrm{x} \in \mathrm{~A}}(\mathrm{t} \notin \mathrm{~B})\right]: \mathrm{B}}{\Xi \vdash_{\text {val }} \lambda x . \mathrm{t}: \mathrm{A} \Rightarrow \mathrm{~B}} \Rightarrow_{i} \quad \frac{\Xi \vdash \mathrm{t}: \mathrm{A} \Rightarrow \mathrm{~B} \quad \Xi \vdash \mathrm{u}: \mathrm{A}}{\Xi \vdash \mathrm{tu}: \mathrm{B}} \Rightarrow_{e} \\
\overline{\Xi \vdash_{\text {val }} \varepsilon_{x \in \mathcal{A}}(\mathrm{t} \notin \mathrm{~B}): \mathrm{A}}
\end{gathered}
$$

Rather Usual Typing Rules

$$
\begin{gathered}
\frac{\Xi \vdash \mathrm{t}\left[\mathrm{x}:=\varepsilon_{x \in A}(\mathrm{t} \notin \mathrm{~B})\right]: \mathrm{B}}{\Xi \vdash_{\mathrm{val}} \lambda x . \mathrm{t}: A \Rightarrow \mathrm{~B}} \quad \frac{\Xi \vdash \mathrm{t}: A \Rightarrow \mathrm{~B} \quad \Xi \vdash \mathrm{u}: A}{\Xi \vdash \mathrm{tu}: \mathrm{B}} \Rightarrow_{\mathrm{e}} \\
{\overline{\Xi \vdash_{\text {val }} \varepsilon_{x \in A}(\mathrm{t} \notin \mathrm{~B}): A}}^{\mathrm{Ax}}
\end{gathered}
$$

$$
\begin{array}{lc}
\frac{\left(\Xi \vdash_{\text {val }} v_{i}: A_{i}\right)_{i \in I}}{\Xi \vdash_{\text {val }}\left\{\left(l_{i}=v_{i}\right)_{i \in I}\right\}:\left\{\left(l_{i}: A_{i}\right)_{i \in I}\right\}} \times_{i} & \Xi \vdash_{\text {val }} v:\left\{\left(l_{i}: A_{i_{i}}\right)_{i \in I}\right\} \quad k \in I \\
\Xi \vdash v . l_{k}: A_{k} \\
\begin{array}{ll}
\Xi \vdash_{\text {val }} v: A\left[X:=\varepsilon_{X}(v \notin A)\right] \\
\Xi \vdash_{\text {val }} v: \forall X . A & \Xi \vdash t: \forall X . A \\
V_{i}
\end{array} & \frac{\Xi \vdash t: A[X:=B]}{\Xi}
\end{array}
$$

Equivalence types

Equivalence types

$$
\begin{gathered}
\llbracket A \upharpoonright u_{1} \equiv u_{2} \rrbracket=\left\{v \in \llbracket A \rrbracket \mid u_{1} \equiv u_{2}\right\} \cup\{\square\} \\
u_{1} \equiv u_{2} \text { is defined as }\left\} \upharpoonright u_{1} \equiv u_{2} .\right.
\end{gathered}
$$

$$
\begin{aligned}
& \llbracket A \upharpoonright u_{1} \equiv u_{2} \rrbracket=\left\{v \in \llbracket A \rrbracket \mid u_{1} \equiv u_{2}\right\} \cup\{\square\} \\
& u_{1} \equiv u_{2} \text { is defined as }\left\} \upharpoonright u_{1} \equiv u_{2} .\right. \\
& \frac{\Xi \vdash t: A \quad \Xi \vdash u_{1} \equiv u_{2}}{\Xi \vdash t: A \upharpoonright u_{1} \equiv u_{2}} \\
& \frac{\Xi, u_{1} \equiv u_{2} \vdash_{\text {val }} \varepsilon_{x \in A}(t \notin B): C}{\Xi \vdash_{\text {val }} \varepsilon_{x \in A \upharpoonright u_{1}=u_{2}}(t \notin B): C}
\end{aligned}
$$

SINGLETON AND TYPED QUANTIFICATION

$$
\llbracket t \in A \rrbracket=\{v \in \llbracket A \mathbb{A} \rrbracket t \equiv v\} \cup\{\square\}
$$

$(a: A) \Rightarrow B$ is defined as $\forall a .(a \in A \Rightarrow B)$.

Singleton and typed Quantification

$$
\begin{gathered}
\llbracket t \in A \rrbracket=\{v \in \llbracket A \rrbracket \mid t \equiv v\} \cup\{\square\} \\
(a: A) \Rightarrow B \text { is defined as } \forall a \cdot(a \in A \Rightarrow B) .
\end{gathered}
$$

$$
\frac{\Xi \vdash_{\text {val }} v: A}{\Xi \vdash_{\text {val }} v: v \in A} \epsilon_{i} \quad \frac{\Xi, \varepsilon_{x \in A}(t \notin B) \equiv u \vdash \varepsilon_{x \in A}(t \notin B): C}{\Xi \vdash \varepsilon_{x \in(u \in A)}(t \notin B): C} \epsilon_{e}
$$

Singleton and typed Quantification

$$
\begin{gathered}
\llbracket t \in A \rrbracket=\{v \in \llbracket A \rrbracket \mid t \equiv v\} \cup\{\square\} \\
(a: A) \Rightarrow B \text { is defined as } \forall a .(a \in A \Rightarrow B) . \\
\frac{\Xi \vdash_{\text {val }} v: A}{\Xi \vdash_{\text {val }} v: v \in A} \epsilon_{i} \quad \frac{\Xi, \varepsilon_{x \in A}(t \notin B) \equiv u \vdash \varepsilon_{x \in A}(t \notin B): C}{\Xi \vdash \varepsilon_{x \in(u \in A)}(\mathrm{t} \notin \mathrm{~B}): C} \epsilon_{\mathrm{e}} \\
\frac{\Xi \vdash \mathrm{t}\left[x:=\varepsilon_{x \in A}(\mathrm{t} \notin \mathrm{~B}[\mathrm{a}:=x])\right]: \mathrm{B}\left[\mathrm{a}:=\varepsilon_{x \in A}(\mathrm{t} \notin \mathrm{~B}[\mathrm{a}:=\mathrm{x}])\right]}{\Xi \vdash_{\text {val }} \lambda x . \mathrm{t}:(\mathrm{a}: A) \Rightarrow \mathrm{B}} \\
\frac{\Xi \vdash \mathrm{t}:(\mathrm{a}: A) \Rightarrow \mathrm{B} \quad \Xi \vdash_{\text {val }} v: A}{\Xi \vdash \mathrm{t} v: \mathrm{B}[\mathrm{a}:=v]}
\end{gathered}
$$

EQuivalence Learning and Congruence

EQuivalence Learning and Congruence

$$
\frac{\Xi \vdash v:\left[\left(\mathrm{C}_{i}: A_{i}\right)_{i \in \mathrm{I}}\right] \quad\left(\Xi, v \equiv \mathrm{C}_{\mathrm{i}}\left[\varepsilon_{x_{i} \in A_{i}}\left(\mathrm{t}_{i} \notin \mathrm{C}\right)\right] \vdash \mathrm{t}_{i}\left[\mathrm{x}_{\mathrm{i}}:=\varepsilon_{x_{i} \in A_{i}}\left(\mathrm{t}_{i} \notin \mathrm{C}\right)\right]: \mathrm{C}\right)_{\mathrm{i} \in \mathrm{I}}}{\Xi \vdash\left[v \mid\left(\mathrm{C}_{\mathrm{i}}\left[\mathrm{x}_{\mathrm{e}}\right] \rightarrow \mathrm{t}_{\mathrm{i}}\right)_{i \in \mathrm{I}}\right]: \mathrm{C}}
$$

EQuivalence Learning and Congruence

$$
\begin{gathered}
\frac{\Xi \vdash v:\left[\left(C_{i}: A_{i}\right)_{i \in I}\right] \quad\left(\Xi, v \equiv C_{i}\left[\varepsilon_{x_{i} \in A_{i}}\left(t_{i} \notin \mathrm{C}\right)\right] \vdash \mathrm{t}_{i}\left[\mathrm{x}_{\mathrm{i}}:=\varepsilon_{x_{\mathrm{i}} \in \mathcal{A}_{\mathrm{i}}}\left(\mathrm{t}_{\mathrm{i}} \notin \mathrm{C}\right)\right]: \mathrm{C}\right)_{\mathrm{i} \in \mathrm{I}}}{}{ }_{+} \\
\Xi \vdash\left[v \mid\left(\mathrm{C}_{\mathrm{i}}\left[\mathrm{x}_{\mathrm{i}}\right] \rightarrow \mathrm{t}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}\right]: \mathrm{C} \\
\frac{\Xi \vdash \mathrm{t}: v \in \mathrm{~A} \Rightarrow \mathrm{~B} \quad \Xi \vdash_{\text {val }} v: \mathrm{A}}{\Xi \vdash \mathrm{t} v: \mathrm{B}} \Rightarrow_{\mathrm{e}_{, e \varepsilon}}
\end{gathered}
$$

EQuivalence Learning and Congruence

$$
\begin{aligned}
& \frac{\Xi \vdash \mathrm{t}: v \in \mathrm{~A} \Rightarrow \mathrm{~B} \quad \Xi \vdash_{\text {val }} v: \mathrm{A}}{\Xi \vdash \mathrm{t} v: \mathrm{B}} \Rightarrow_{\mathrm{e}, \mathrm{e}} \\
& \frac{\Xi \vdash t\left[a:=u_{1}\right]: A\left[a:=u_{1}\right] \quad \Xi \vdash u_{1} \equiv u_{2}}{\Xi \vdash t\left[a:=u_{2}\right]: A\left[a:=u_{2}\right]} \equiv
\end{aligned}
$$

Semantical Value Restriction

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

$$
\frac{\Xi \vdash_{\text {val }} v: A}{\Xi \vdash_{\text {val }} v: v \in A} \epsilon_{\mathrm{i}}
$$

$$
\frac{\Xi \vdash \mathrm{t}: A \quad \Xi \vdash v \equiv \mathrm{t}}{\Xi \vdash \mathrm{t}: \mathrm{t} \in A} \epsilon_{\mathrm{i}}
$$

Semantical Value Restriction

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

$$
\frac{\Xi \vdash_{\text {val }} v: A}{\Xi \vdash_{\text {val }} v: v \in A} \epsilon_{\mathrm{i}} \quad \frac{\Xi \vdash \mathrm{t}: A \quad \Xi \vdash v \equiv \mathrm{t}}{\Xi \vdash \mathrm{t}: \mathrm{t} \in \mathcal{A}} \epsilon_{\mathrm{i}}
$$

Having the rule $\frac{\Xi \vdash v: A}{\Xi \vdash_{\text {val }} v: A} \downarrow$ is enough.

Semantical Value Restriction

A Classical Realizability Model for a Semantical Value Restriction (ESOP 2016).

$$
\begin{array}{cl}
\frac{\Xi \vdash_{\text {val }} v: A}{\Xi \vdash_{\text {val }} v: v \in A} \epsilon_{i} & \frac{\Xi \vdash t: A \quad \Xi \vdash v \equiv \mathrm{t}}{\Xi \vdash t: \mathrm{t} \in \mathcal{A}} \epsilon_{\mathrm{i}} \\
\text { Having the rule } & \frac{\Xi \vdash v: A}{\Xi \vdash_{\text {val }} v: A} \downarrow \text { is enough. }
\end{array}
$$

Relaxed rules can be derived using $(\downarrow),(\uparrow)$ and (\equiv).

THE NEW INSTRUCTION TRICK

THE NEW INSTRUCTION TRICK

The property $\llbracket A \rrbracket^{\Perp \Perp} \cap \Lambda_{\iota} \subseteq \llbracket A \rrbracket$ is not true in every realizability model.

The new instruction trick

The property $\llbracket A \rrbracket^{\Perp \Perp} \cap \Lambda_{\imath} \subseteq \llbracket A \rrbracket$ is not true in every realizability model.

To obtain it we extend the system with a new term constructor $\delta_{v, w}$ with the rule $\delta_{v, w} * \pi>\nu * \pi$ when $v \not \equiv w$.

THE NEW INSTRUCTION TRICK

The property $\llbracket A \rrbracket^{\Perp \Perp} \cap \Lambda_{\imath} \subseteq \llbracket A \rrbracket$ is not true in every realizability model.

To obtain it we extend the system with a new term constructor $\delta_{v, w}$ with the rule $\delta_{v, w} * \pi>v * \pi$ when $v \not \equiv w$.

Idea of the proof:

- suppose $v \notin \llbracket A \rrbracket$ and show $v \notin \llbracket A \rrbracket^{\Perp,}$,
- we need to find π such that $v * \pi \notin \Perp$ and $\forall w \in \llbracket A \rrbracket, w * \pi \in \Perp$,
- we can take $\pi=\left[\lambda x . \delta_{x, v}\right] \varepsilon$,
- $v *\left[\lambda x . \delta_{x, v}\right] \varepsilon>\lambda x . \delta_{x, v} * v . \varepsilon>\delta_{v, v} * \varepsilon$,
$-w *\left[\lambda x . \delta_{x, v}\right] \varepsilon>\lambda x . \delta_{x, v} * w . \varepsilon>\delta_{w, v} * \varepsilon>w * \varepsilon$.

Stratified reduction and EQUIVALENCE

The definitions of $(>)$ and (\equiv) are circular.

Stratified reduction and EQUIVALENCE

The definitions of $(>)$ and (\equiv) are circular.

We need to rely on a stratified construction of the two relations.

$$
\begin{aligned}
\left(\rightarrow_{i}\right) & =(>) \cup\left\{\left(\delta_{v, w} * \pi, v * \pi\right) \mid \exists \mathfrak{j}<\mathfrak{i}, v \not \equiv_{\mathrm{j}} w\right\} \\
\left(\cong_{i}\right) & =\left\{(\mathrm{t}, \mathrm{u}) \mid \forall \mathfrak{j} \leqslant \mathfrak{i}, \forall \pi \in \Pi, \forall \rho, \mathrm{t} \rho * \pi \Downarrow_{\mathrm{j}} \Leftrightarrow \mathrm{u} \rho * \pi \Downarrow_{\mathrm{j}}\right\}
\end{aligned}
$$

STRATIFIED REDUCTION AND EQUIVALENCE

The definitions of $(>)$ and (\equiv) are circular.

We need to rely on a stratified construction of the two relations.

$$
\begin{aligned}
\left(\rightarrow_{i}\right) & =(>) \cup\left\{\left(\delta_{v, w} * \pi, v * \pi\right) \mid \exists \mathfrak{j}<\mathfrak{i}, v \not \equiv_{j} w\right\} \\
\left(\cong_{i}\right) & =\left\{(\mathrm{t}, \mathrm{u}) \mid \forall \mathfrak{j} \leqslant \mathfrak{i}, \forall \pi \in \Pi, \forall \rho, \mathrm{t} \rho * \pi \Downarrow_{\mathrm{j}} \Leftrightarrow \mathrm{u} \rho * \pi \Downarrow_{\mathrm{j}}\right\}
\end{aligned}
$$

We then take $(\rightarrow)=\cup_{i \in \mathbb{N}}\left(\rightarrow \rightarrow_{i}\right)$ and $(\cong)=\cap_{i \in \mathbb{N}}\left(\cong_{i}\right)$.

$$
\begin{aligned}
& (\cong)=\left\{(\mathrm{t}, \mathrm{u}) \mid \forall \mathrm{i} \in \mathbb{N}, \forall \pi \in \Pi, \forall \rho, \mathrm{t} \rho * \pi \Downarrow_{i} \Leftrightarrow u \rho * \pi \Downarrow_{i}\right\} \\
& (\rightarrow)=(>) \cup\left\{\left(\delta_{v, w} * \pi, v * \pi\right) \mid v \nsupseteq w\right\}
\end{aligned}
$$

$$
\begin{aligned}
& (\cong)=\left\{(\mathrm{t}, \mathrm{u}) \mid \forall i \in \mathbb{N}, \forall \pi \in \Pi, \forall \rho, \mathrm{t} \rho * \pi \Downarrow_{i} \Leftrightarrow u \rho * \pi \Downarrow_{i}\right\} \\
& (\rightarrow)=(>) \cup\left\{\left(\delta_{v, w} * \pi, v * \pi\right) \mid v \nsupseteq w\right\}
\end{aligned}
$$

The relation (\cong) is "compatible" with (\equiv).

$$
\begin{aligned}
& (\cong)=\left\{(\mathrm{t}, \mathrm{u}) \mid \forall i \in \mathbb{N}, \forall \pi \in \Pi, \forall \rho, \mathrm{t} \rho * \pi \Downarrow_{i} \Leftrightarrow \mathrm{u} \rho * \pi \Downarrow_{i}\right\} \\
& (\rightarrow)=(>) \cup\left\{\left(\delta_{v, w} * \pi, v * \pi\right) \mid v \not \equiv w\right\}
\end{aligned}
$$

The relation (\cong) is "compatible" with (\equiv).

$$
\text { In particular we have }(\cong) \subseteq(\equiv)
$$

$$
\begin{aligned}
& (\cong)=\left\{(\mathrm{t}, \mathrm{u}) \mid \forall i \in \mathbb{N}, \forall \pi \in \Pi, \forall \rho, \mathrm{t} \rho * \pi \Downarrow_{i} \Leftrightarrow u \rho * \pi \Downarrow_{i}\right\} \\
& (\rightarrow)=(>) \cup\left\{\left(\delta_{v, w} * \pi, v * \pi\right) \mid v \nexists w\right\}
\end{aligned}
$$

The relation (\cong) is "compatible" with (\equiv).

$$
\text { In particular we have }(\cong) \subseteq(\equiv)
$$

If for all π there is p such that $t * \pi>^{*} p$ and $u * \pi>^{*} p$ then $t \cong u$.

WORK IN PROGRESS AND FUTURE WORK

Work in progress and future work

Implementation of the system (in progress).
Inductive and coinductive types (in progress).
Recursion, termination checking (in progress).

Work in progress and future work

Implementation of the system (in progress).
Inductive and coinductive types (in progress).
Recursion, termination checking (in progress).

Compile PML programs (future work).
Mixing terminating / non-terminating programs (future work).

WORK IN PROGRESS AND FUTURE WORK

Implementation of the system (in progress).
Inductive and coinductive types (in progress).
Recursion, termination checking (in progress).

```
PhD thesis (coming soon).
```

Compile PML programs (future work).
Mixing terminating / non-terminating programs (future work).

Fin.

