
Theory and Demo of PMLz
Proving Programs in ML

types2017 (Budapest 01/06/2017)

Rodolphe Lepigre

rodolphe.lepigre@univ-smb.fr

LAboratoire de MAthématiques, UMR 5127 CNRS

Programming Language, with Proving Features

An ML-like programming language:

General recursion, records and variants

Call-by-value evaluation

Eêfects (control operators)

Curry-style language

Subtyping

1 / 12

Programming Language, with Proving Features

An ML-like programming language:

General recursion, records and variants

Call-by-value evaluation

Eêfects (control operators)

Curry-style language

Subtyping

An enriched type system for program proving:

Higher-order layer with programs as individuals

Equality types t u v (observational equivalence)

Dependent function type (typed quantiëcation)

Termination checking (only required for proofs)

1 / 12

Example of Program and Proof

type rec nat = [Z ; S of nat]

val rec add : nat w nat w nat = fun n m x

case n { Z[_] x m | S[k] x S[add k m] }

2 / 12

Example of Program and Proof

type rec nat = [Z ; S of nat]

val rec add : nat w nat w nat = fun n m x

case n { Z[_] x m | S[k] x S[add k m] }

val add_Z_n : yn: z , add Z n u n = {}

2 / 12

Example of Program and Proof

type rec nat = [Z ; S of nat]

val rec add : nat w nat w nat = fun n m x

case n { Z[_] x m | S[k] x S[add k m] }

val add_Z_n : yn: z , add Z n u n = {}

val rec add_n_Z : yn{nat, add n Z u n = fun n x

case n {

Z[_] x {}

S[p] x add_n_Z p

}

2 / 12

Detailed Proof Using (Higher-Order) Macros

def tac_deduce<f:|> : } = ({} : f)

def tac_show<f:|, p:}> : } = (p : f)

def tac_qed : } = {}

3 / 12

Detailed Proof Using (Higher-Order) Macros

def tac_deduce<f:|> : } = ({} : f)

def tac_show<f:|, p:}> : } = (p : f)

def tac_qed : } = {}

val rec add_n_Z : yn{nat, add n Z u n = fun n x

case n {

Z[_] x deduce add Z Z u Z; qed

S[k] x show add k Z u k using add_n_Z k;

deduce S[add k Z] u S[k];

deduce add S[k] Z u S[k]; qed

}

3 / 12

Fine-grained Specification Using Equivalence

val rec is_even : nat w bool = fun n x

case n {

Z[_] x true

S[p] x case p { Z[_] x false | S[p] x is_even p }

}

4 / 12

Fine-grained Specification Using Equivalence

val rec is_even : nat w bool = fun n x

case n {

Z[_] x true

S[p] x case p { Z[_] x false | S[p] x is_even p }

}

type even_nat = ~v: z , (v{nat | is_even v u true)

4 / 12

Fine-grained Specification Using Equivalence

val rec is_even : nat w bool = fun n x

case n {

Z[_] x true

S[p] x case p { Z[_] x false | S[p] x is_even p }

}

type even_nat = ~v: z , (v{nat | is_even v u true)

val rec double : nat w even_nat = fun n x

case n {

Z[_] x Z

S[p] x let r : even_nat = double p in S[S[r]]

}

4 / 12

More Examples of Specifications

type rec list<a> = [Nil ; Cons of {hd : a ; tl : list}]

// Vectors (as a subtype of lists)

val length : ya:|, list<a> w nat = {- ... -}

type vec<a:|, s:}> = ~l: z , l{list<a> | length l u s

// Sorted lists (as a subtype of lists)

val increasing : list<nat> w bool = {- ... -}

type sorted_list = ~l: z , l{list<nat> | increasing l u true

5 / 12

Classical Realisability Semantics

Realisability is about computation:

Call-by-value Krivine Machine (for classical logic)

� �States of the form t � � with a reduction relation �

6 / 12

Classical Realisability Semantics

Realisability is about computation:

Call-by-value Krivine Machine (for classical logic)

� �States of the form t � � with a reduction relation �

We also require a notion of observational equivalence:
�We write t � � � for ~ � , t � � � � � � (successful computation)

� � � �� �u is deëned as t , v � y � , y� , t� � � � � v� � � �

6 / 12

Classical Realisability Semantics

Realisability is about computation:

Call-by-value Krivine Machine (for classical logic)

� �States of the form t � � with a reduction relation �

We also require a notion of observational equivalence:
�We write t � � � for ~ � , t � � � � � � (successful computation)

� � � �� �u is deëned as t , v � y � , y� , t� � � � � v� � � �

A type A is interpreted using two sets (in fact three):

� �The set of its ìcanonicalí values A
		� � � �A set of terms A deëned as a form of completion of A

� �Closure under u is required on those sets

6 / 12

Interpretation of the (Usual) Types

�)Ai:l i(
I{i

�� = ��Ai
�{�i,I{iy��)�i=l i(

I{i
�

])Ai:Ci(
I{i

[� = ��Ai
�{��]�[Ci�� I{i

�BwA� = ��B� 		
{]���[t,�A�{�y�t.���

�A.�sy� = �]���[A�� �s�{�

�A.�s~� = �]���[A�� �s�{�

�A.X� }
� = �����A��X� �

� }<�

�A.X�}� = �� z���A��X� �
� }<�

7 / 12

Membership Type and Dependent Functions

A new membership type t{A :

Built using a term t and a type A

Denotes the equivalence class of t in A

� � � �� �Interpreted as t{A = � { A � t u �

8 / 12

Membership Type and Dependent Functions

A new membership type t{A :

Built using a term t and a type A

Denotes the equivalence class of t in A

� � � �� �Interpreted as t{A = � { A � t u �

Only way to link the ìword of termsí and the ìworld of typesí

8 / 12

Membership Type and Dependent Functions

A new membership type t{A :

Built using a term t and a type A

Denotes the equivalence class of t in A

� � � �� �Interpreted as t{A = � { A � t u �

Only way to link the ìword of termsí and the ìworld of typesí

The dependent function type is encoded using membership:

ya{A, B is deëned as ya.(a{A w B)

Related to the relativised quantiëcation scheme

8 / 12

Semantic Restriction and Subsets

A new restriction type A � P:

Built using a type A and a ìsemantic predicateí P

� � � � � �A � P is equal to A if P is satisëed and to yX.X otherwise

Examples of predicates: t u v , � � 0, A � B, ¬P, P�Q

9 / 12

Semantic Restriction and Subsets

A new restriction type A � P:

Built using a type A and a ìsemantic predicateí P

� � � � � �A � P is equal to A if P is satisëed and to yX.X otherwise

Examples of predicates: t u v , � � 0, A � B, ¬P, P�Q

The equality type t u v is encoded as �� � t u v

9 / 12

Semantic Restriction and Subsets

A new restriction type A � P:

Built using a type A and a ìsemantic predicateí P

� � � � � �A � P is equal to A if P is satisëed and to yX.X otherwise

Examples of predicates: t u v , � � 0, A � B, ¬P, P�Q

The equality type t u v is encoded as �� � t u v

Restriction and membership can be combined into a subset type:
z� �It is possible to deëne �{A � P as ~� .�{A � P

� �Note that �{A � P is always a subtype of A

A similar constructor can be used in nuPRL

9 / 12

Internal Totality Proofs

val rec add_total : yn m{nat, ~v: z , add n m u v = fun n m x

case n {

Z[_] x qed

S[k] x use add_total k m; qed

}

10 / 12

Internal Totality Proofs

val rec add_total : yn m{nat, ~v: z , add n m u v = fun n m x

case n {

Z[_] x qed

S[k] x use add_total k m; qed

}

val rec add_asso : yn m p{nat, add n (add m p) u add (add n m) p =

fun n m p x

use add_total m p;

case n {

Z[_] x qed

S[k] x use add_total k m; use add_asso k m p; qed

}

10 / 12

Subtyping and Termination

Subtyping and termination checking are handled using circular proofs:

Types (and judgments) are parametrised by ordinals siîes

A proof forms a directed acyclic graph of atomic proof blocks

The edges carry siîe relations between matching ordinals

11 / 12

Subtyping and Termination

Subtyping and termination checking are handled using circular proofs:

Types (and judgments) are parametrised by ordinals siîes

A proof forms a directed acyclic graph of atomic proof blocks

The edges carry siîe relations between matching ordinals

We use an external check to show that typing derivations are well-founded

11 / 12

Subtyping and Termination

Subtyping and termination checking are handled using circular proofs:

Types (and judgments) are parametrised by ordinals siîes

A proof forms a directed acyclic graph of atomic proof blocks

The edges carry siîe relations between matching ordinals

We use an external check to show that typing derivations are well-founded

A semantic proof by induction on the typing derivation gives normalisation

11 / 12

References for Technical Details

A Classical Realizability Model for a Semantical Value Restriction

R. Lepigre (ESOP 2016)

Practical Subtyping for System F with Sized (Co-)Induction

R. Lepigre and C. Raêfalli (2016 - 2017)

https://lama.univ-smb.fr/subml/

Semantics and Implementation of an Extension of ML for Proving Programs

R. Lepigre, PhD manuscript

https://lama.univ-smb.fr/~lepigre/these/

12 / 12

Thanks!

